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Laser-Inducod Line NarrtJwin^ Effect In Coupled 

Doppler-Broadened 'I'ransilions 

M. S,   held and A .  Javan 

ABSTRACT 

The line .shape of a Doppler-broadened transition is dramatically 

altered by the presence of a laser field resonating with a second Doppler- 

broadened transition sharing a common level: two narrow resonances of 

different widths appear superimposed upon the jroad background signal 

at frequencies symmetrically located about the corresponding line center. 

The effect has already found application in a number of seemingly differ- 

ent though intimate'y related studies,   including high resolution h. f. s. 

and isotope shift determinations.    The theory of th^   effect is developed 

with reference to these» applin;itions.    The treatment is formulated in 

terms of transition rates induced by two classical fields resonantly inter- 

acting with a pair of coupled Doppler-broadened transitions of arbitrary 

frequencies.    The perturbation approach adopted is valid for one field 

fully saturating its transition; the resulting line shape expression exhibits 

important power broadening effects.    This approach is equivalent to the 

familiar density matrix formulation,  which is also presented.    Various 

features of the resulting expression are discussed in detail as they apply 

to two precision spectroscopic applications,  Mode Crossing and Sponta- 

neous Emission Line Narrowing.    The; connection with previous work is 

also discussed. 
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L INTRODUCTION 

It is well kncnvrr  ' that the overall gain profile of a Doppler-broadened 

laser transition is dramatically influenced by the presence of the laser field. 

This may be demonstrated by scanning the gain profile with a weak,   mono- 

chromatic probe field eolinear with the laser field;   As the probe field is 

tuned through the transition,  two identical sharp decreases in gain appear 

superimposed upon the broad lineshape,  one at the laser frequency and one 

symmetrically located on the opposite sitlo of the atomic line center. 

[Kig.l(a) ].   These resonant decreases occur because the standing-wave field 

within the laser cavity selectively interacts with atoms whose velocities 

Doppler-shift one of its travelling-wave components into resonance.    This 

produces changes in the laser level populations-- an increase in the lower 

level population and a decrease in the upper level population-- over two 

intervals symmetrically located about the center of the velocity distribution. 

These changes reflect themselves in depletions in the gain profile over the 

corresponding frequency intervals.    The extent of these intervals is 

determined by the natural widths lor,   more generally,  the homogeneous 

widths) of the atomic transitions. 

In the foregoing discussion it is assumed that the laser field is de- 

tuned from u).-,,  the atomic center frequency.    As its frequency approaches 

within a natural width of u9,  the two resonant decreases merge into a single 

one.    However,  let us primarily consider those cases in which the laser fre- 

quency is detuned and the change signals are well resolved. 
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The line shape of a second Düppler-broadened traneition formed by 

cither of the levels of the laser transition and a third level is also consider- 

ably altered by laser oscillation:   Scanning as before the gain (or attenuation) 

profile of this transition with a weak probe field,  one again finds two sharp 

resonances at frequencies symmetrically located about the correnponding 

line center.    These change signals differ from those of the laser transition 

in one remarkable aspect;   one can be considerably narrower than the other. 

[Fig. 1 (b)] .       We shall refer to the widths of the broad and narrow change 

signals as r„ and rx.,   respectivelv.        For example,    if   the 

center frequency of the coupled transition (0 - 1) is close to that of the laser 

transition (0-2)   then,   for a weakly-saturating laser field.   !>,- y. + 72 and 

rR = y, + Yo + 2 7n.   with y. the decay rate of level j.    In comparison,  the 

change signals of the laser transition are each of width   F.   ~ Tn + "^2" 

Similar lineshape features would be observed in the closely related 

situation in which the fluorescence from either of the laser levels to a third 

level is monitored along the laser axis. Note that the resulting spontaneous 

emission spectrum directly follows the spectrum of emission stimulated by 

a weak probe field tuned through the coupled transition when the lower level 

population of the coupled transition is ignored.  As an illustration, suppose the 

laser field were tuned to the low frequency side of its Doppler profile: For emission 

originating in its upper level,  the LiSer-induced change signals would appear 

as resonant decreases of widths 1'    below w.  and rR above w.,   with w    the 



fluorescence center frequency.    In contrast,  emission originating in the 

lower laser level would result in resonant increases with the positions 

of the broad and narrow change signals interchanged.    A further note- 

worthy distinction is the differing radiative origins of the change signals; 

in the former case they result primarily from double-quantum transitions, 

while in the latter case they are primarily due to single-quantum tran- 

sitions.    This important distinction is elaborated below. 

Since n, and r., are generally much narrower than the Dopplcr 

widths we shall refer to this effect as "Laser-Induced Doppler Line 

Narrowing". 

As has been noted,   the stimulated and spontaneous versions of 

Laser-Induced Doppler Lino Narrowing are different manifestations of 

the same basic quantum-mechanical effect.    Nevertheless,   important 

applications of these versions bear little res  mblance to onv another on 

the surface.    A major purpose of this paper is to relate the basic effect 

to these intimately connected  though   seemingly different applications. 

In some of these !„ >"> L.-,  pausing the differing width characteristic a is 

to reveal themselves in particularly striking ways. 

Several puibications dealing with details of the line shape in various 
12   a) (2) 

special cases have appeared previously. ' The initial presentation       by 

Schlossbr-rg and Jav n,  a quantum-mochanical analysis of the third-order 

polarisation induced by two classical fields,   demonstrated the applicability 

of the narrow resonance r    to high-resolution studies of closely-spaced 
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Doppler-broadened laser transitions [Fig.  2(b)].    The latter treatment also 

applies to a cascade system [Fiß.   2(c)]   in which the middle level lies about 

halfway between the upper and lower levels.    Subsequently,  Notkin,  Rautian 
(4) 

-ind Feoktistov presented a quantized field calculatifin which dt.'seribed 

thc> spontaneous emission spectrum arising from one of the levels of a 
(5) 

weakly-saturated laser transition.    A recent discussion       by Holt,   formu- 

lated on the basis of two-photon transitions induced by the laser field, 

analyzed the frequency profile of the spontaneous emission arising from the 

lower laser level [Fig.  2(c)|.    This treatment neglects single-quantum 

events and would not apply,   for example,  to the case of spontaneous emis- 

sion arising from the upper laser level.    The treatrrent of Ref. 4.      how- 

ever,   is valid in either case.    A subsequent lette»       by the present authors 

analyzed the spontaneous and stimulated versions of Laser-Induced Ooppler 

Fine Narrowing experiments by means of a classical field approach, 

emphasizing their close relationship; the theoretical treatment took into 

account the influence of both single-quantum and double-quantum transitions, 

(9) and included,   in addition,   intensity-dependent line broadening effects. 

The present paper is,   In part,  an elaboration ofthat letter,    *  and 

contains additional detailed discussions.    The treatment is formulated in 

terms of transition rates induced by two classical fields resonantly inter- 

acting with a pair of coupled Doppler-broadened transitions of arbitrary 

frequencies.    The method of analysis is an extension of the one       adopted 

some time ago in calculating the line shape details of a three level maser. 



In this approach two distinrl processes emerge;  the first,   a double-quantum 

transition,   involves the exchange of a photon with each of the two applied 

fields: the second,  an inherently single-quantum act,   includes the influence 

of one field on the rate at which single-quantum transitions arc induced by 

the other field.    This distinction is not apparent  in tlie usual density-matrix 

formalism in which the induced t-'olari/.alton is calculated.    'The two ;i|)~ 

nroaches are,   of course,   equivalent; their connection will be clarified 

below.    Moreover,   the theoretical approach adopted is not restricted to a 

third-order polarization ealculation.   and is valid for one field fully 

saturating its transition, the resulting line shape expression exhibits im- 

portant power broadening effects.    We   ire  tble to obtain such an expression 

because in the applications discussed .icre it is generally sufficient to con- 

sider the standing-wave laser field to be detuned from the center of its 

Doppler-broadened gain profile.    Then its travelling-wave components do 

not couple to each other and.   consequently,   may be treated independently. 

Furthermore,  major applications and their important physical features are 

adequately described by considering the weak field yain of one transition as 

influenced by a fully-saturated coupled transition; the approach may be 

readily extended,   if necessary,   to include higher order effects. 

The approach of Notkin,   Hautian and Feoktistov, which calculates 

the laser-induced spontaneous emission spectrum,   is complementary to ours. 

That treatment is formulated considering both radiation fields in quantized 

form.    The actual calculation is somewhat simplified,   however,   by con- 

sidering the laser field in its classical form,  a procedure, of course, 
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justifiable for radiation oscillators in states of high excitation.    The spon- 

taneous emission field,  however,  is kept in its quantized form.    The 

introduction of field quarit;i leads naturally to a mathematical development 

considerably different from our classical field approach.    The computa- 

tions are rather involved,   and relevant results arc obtained only for a 

v.   akly-saturating laser field.    As discussed below,   the latter results 

agree with the weak-saturation limit of those obtained here.    In the dis- 

cussions cf Ref. 4    the connection with experimental observations 
(2) 

and theory       of an earlier stimulated version of the effect has not been 

made.    This connection,  which is not apparent on the surface,  is clarified 

below. 

The calculation of the Doppler-br oaden 'd response is carried out 

in i art II.    Section I1A considers the interaction of two monochromatic 

classical travelling-wave fields with a group of three; level atoms moving 

with fixed velocity.   One field is assumed to fully saturate the transition 

with which it resonates; the second field,  assumed weak,   probes the coupled 

transition.    The emitted power at the probe frequency is calculated in t^rms 

of transition rates,   as indicated above.    The subsequent average over atomic 

velocities,  which leads to the Doppler-broadened travelling-wave response, 

i.- outlined in Section IIB,  together with a discussion of the; resulting line 

shape.    The extension of the travelling-wave analysis to standing-wa /e 

applications is presented in Section IIC,   which also discusses the specifically 
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standing-wave elects arising when the intense field is tuned to its atomic 

center frequency.    Wherever possible,  the presentation of detailed alge- 

braic mr>.iipulations and proofs has been deferred to Appendices. 

Part III discusses,  l.y examplo,   important features cf Laser- 

induced Doppler Line Narrowing.    Section I1IA examines the frequency 

dependence of the atomic response prior to Doppler averaging.    Section IIIB 

continues by discussing the extension of the line narrowing effect to the 

spontaneous-emission version mentioned above,   explaining the connection 

with earlier formulations.    In Sections IIIC ami HID two important appli- 

cations are examined in detail: The first,        a technique involving two 

classical fields,  enables structure of Doppler-broadened systems with 

closely spaced levels to be measured with great accuracy.    This tech- 

nique has already been employed in measuring hyperfine structure'1   ' and 

(13) paramagnetic properties of several excited atomic levels.    The 

(14) second, based upon the spontaneous emission version, has been utilized 

in isotope shift' '    and linewidth paramete '     '   ''   measurements in Ne. 

The results of this paper are also directly applicable to the extra- 

ordinary behavior of atomic Oxygen fine-structure laser oscillations at 

8446X, already briefly discussed in Hofs.  3, 7 and 19.    In that case 

other physical processes,   entirely unrelated to the present discussions, 

are of great importance.    We prefer to discuss these together in a separate 
(90) 

publication which will utilize expressions derived below. 



-  10 - 

II.    DOPPLER-BHOADENKD GAIN 

We now proceed to calculate the interaction of a weak,   mono- 

chromatic- probe field with one of the transitions of a Doppler-broadened 

three level system,  as influenced by a saturating field resonating with 

the roupled transition,    in order to describe applications within a Fabry- 

Perot cavity one must consider the possibility of finlrls in the form of 

standing waves,   as well as travelling waves.    For reasons given below, 

the major features of important standing-wave applications may be 

understood by analyzing the ease in which the intense field is detuned from 

the center of its broad Doppler profile.    Considerable simplification then 

results,  and the standing-wa\    response may be analyzed in terms of 

pairs of travelling-wave fields interacting with the respective transitions 

of the three level system.    As will become evident,  the relative propaga- 

tion direction of p1. '>be and saturating field components is of crucial 

importance:  fields propagating in the same direction lead to a probe-field 

line shape which is strikingly different from thai due to oppositely-pro- 

pagating fields. 

The atoms of a Doppler-broadened gas may traverse many wave- 

lengths of the applied fields before decaying.    We adopt here the simple 

picture of alomir motion in Ahich an atom produced in a particular state 

travels undeflected with constant velocity as it decays.    The calculation 

of induced emission may be divided into two stages:  The response is first 

obtained for a band of three level atoms within a narrow range of axial 
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velocities Interacting with th<'    ppiie«] travelling-wave ficlfis; this ciu.mtity 

is then summed over the entire distribution of velocities,  thus obtaining 

the complete emission profile.    The iirst stage,  the- calculation of the 

ensemble-averaged travelling-wave response,  may be carried out in 

several ways.    The induced dipole moment of an atom produced in a 

given state may be calculated from the S-hrddinger equation.    Equiv- 

alently,  one may calculate the rate at which an atom produced in a given 

state makes transitions to other states.    In cither case the response of 

the entire velocity ensemble is obtained by averaging the quantity cal- 

culated over all initial conditions.    The transition rate approach,   which 

has the important advantage of ident;fying the various radiative processes 

by which an atom emits and absorbs photons,  is presented in Section UA. 

The connection between transition rates and induced dipole moments is 

examined in Appendix H.    An alternate  derivation   of the line shape using 

the ensemble-averaged density matrix equations of motion, and related 

discussions, are presented in Appendix C, 

A.    Ensemble-Averaged Response: Transition Rate  \pproach 

The resonant interaction of two monochromatic fields,   F,   and E„, 

with a three level system was treated in Ref. 10  for cases where Uoppler 

broadening is negligible (e. g.,  the microwave region) and the decay rates, 

considered equal for all three levels,   were assumed to result from hard 

collisions.    The perturbation method consisted of first obtaining a closed- 

form solution to the Schrodinger »'quation for K  = 0 and E2 arbitrary,  and 

then using 'his result If) generate ;i solution valid lo first order in E..   The 
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present section is,  in part,  a generalization ofthat method valid for levels 

with differing decay rates, 

Ti o three level systems to be studied are of the type shown  in 

Fig. 2(a), (b), (c).    Level 0, the common level,  is coupled to levels 1 ;ind 

2 by electric dipole matrix elements /u^ and Mof».  respcctively.    Denote 

the energy of level j by fiW.,  and let i W- Wfi| = w ; w.  and w2  fall in the 

optical-infrared region we shall assume (w, - w2) is large compared to 

the natural linewidths.      In the present Section wr consider the "inverted- 

V" level configuration,  in which level 0 lies highest [Fig. 2(a)).    The 

treatment is easily extended to cases in which level 0 lies below either or 

both of levels 1 and 2.    This extension is discussed in Appendix C. 

The system interacts with a strongly saturating field F„(z, t;«) at 

My,  a frequency close to w       Tie resonance at w    is probed by the weak 

field K.(y.,l) at variable frequency il..    To allow for both possible relative 

propagation directions,   E-{'/., t) is taken to be travelling in the positive 

(+/,) direction,  while K„(z, I;«) may propagate in either positive (c - L 1) or 

negative (c    - 1) directions.    Spccifieally, 

iii. t 
Ej (z,t) = E°cos{nit-k1z + 01)= A. (z)e + r. c. 

and (1 a) 

o in2t 

E2 (?., t;«)= E2cos(fi2t..f k2 7. + (i^ A2 (z;<)e     "   + c. c. , 

with k. = n,/c; ihus 
J       J' 

1     o    l*i   -ikiz 
A^^-^F^e     1 

and (1 b) 

i     0   '^2 - Uk2,£ 
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Consider an ensemble of atoms at given position and time,  and 

moving with axial velocities in the narrow interval between v and v+dv. 

In a coordinate system in which the ensemble is at rest the incident fields 

appear as E'(z,t) and E^z.t;«),   with E*. identical to Eqs. (1) except that 

duo to the Doppler effect, 

a. - u\ = n, - k, v 
1111 

U^ Q^ n2- ek2v     ■ (2) 

k- k' = n'./c 
J       J J 

Note that in this section z and t always refer to the coordinates in the 

moving frame.    The total Hamiltonian for the system is 

H - H0 + V (t)      , (3) 

where H0 is the Hamiltonian of an isolated atom with stationary states 

^.(R) of energy tiW.: 
J J 

H0^. =   tAV.^j     .       j"-0,1,2     . (4) 

The ensemble is coupled to the applied fields by the inter?ction Hamiltonian 

V(t) - -ME' (z.t)      . (5) 

in which ju is the- electric dipole operator and E* • El+ E'      The time 

evolution of a particular member of the ensemble is determined by its 

wave function *,  which may be expanded in terms of the stationary states 
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9 

* (R.t) = y   e (t) &   (R)    , (6) 
}--o 

with t- (t) the probability amplitude of level j.    The equations of motion 

for the e.'s may be obtained in the usual manner by inserting Eqs. (3)- 

(6) into the time-dependent Schrodinger oquation H* = i ttB^/dt. 

multiplying on the left by ^*,  and integrating over all spaee (R).    Going 

over to the interaction picutre by means of the transformation 

iW.t 
c.(t) =  ej(t)c      J , (7) 

one obtains: 

.       \ 
c. =   >   a.c.      • (81 

.1 

in \'rhieh 

i(\\; - VV;)t 
a,,= --V .e ; (9) 

VU     'MijEf ^'^       * <10) 

(In the above equations R indicates the electron coordinates in the atom's 

reference frame and 7 is the position vector of th<> atom's center of mass 

in the moving frame. ) 

Equation (8) describes thr- evolution of an undamped atom.    The 

effects of radiative decay may be includerP21^by modifying (8): 

c. =   > (a.. 7. 6. )f:        . /11* 1     /^     »J     2     J   iJ    J Ui' 
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Note that in the absence of applied fields (11) leads to exponential decay of 

level j with decay rate   7.: 

|c  (t-t»)r =   lc  (t«)r e       ' . (12) 
J J 

Equation (11) may be simplified by the substitution 

+ i 7 t 
d. (t)-cj(t)e    2     » . (13) 

which yields a set of coupled equations of exactly the form of the undamped 

equations of motion (8): 

vlVj      ' (14) 
j 

with 

iCVYJt 

The system of nqu:itions(li)(or its equivalent, (14)] must be solved sub- 

ject to the appropriate initial conditions.   Generally speaking, immediately after 

its creation the wave function of an atom is a mixture of stationary states with 

arbitrary phase factors.   Tbf random nature of these phase factors,   however, 

makes possible the assumption that the atoms are produced in the pure states, 

levels 0, 1 and2.   In considering the excitation of these levels one may dis- 

tinguish between transitions induced by the applied fields and background 

excitation arising from incoherent processes.   The latter are responsible 

for populating the levels at rates which may be assumed to be independent 

(22) of the applied fields;       accordingly, background atoms are produced in level 

k at a rate n. 7. ,  where n,   is the number of atoms with velocity component v 

in level k in the absence of applied fields. 
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We adopt the notation c.(t;t0, k) to indicate a solution to (11) for an atom 

produced in level k at t0/
23) The appropriate boundary conditions are: 

^0^ = ViV (16) 
in  which the (p.'s are unimportant arbitrary phase factors. The transition probability 

J 

to another level, level j, at subsequent time t is !c.(t;t  ,k)l   .    The prob- 

ability of an atom in levoj j decaying in the interval between t and I + dt is 

Y.dt.    Thus,  for an atom produced in level k at t  ,  the transition rate to level 

,i3is:(24) 

y.\o.{V,tQ,k)\2. (17) 

Considering that the rate of production of atoms in level k is n. 7. ,  the 

ensemble-averaged transition rate between levels k and j is: 
t^ 

nk Vj  \ ICj^t^k)!2 dl0      nk.Ik. . (18) 

which defines .], ..   the ensemble-averaged k —J transition ratr; per atom 

produced in level k. 

In order to estimate the net emitted power induced by El,   all 

events in which a photon is emitted or absorbed at nl must be considered; 

An atom which is produced in level 2 and subsequently decays from level 

1 at rate J.71 must,  by necessity of energy conservation,  exchange two 

photons with the applied fields,  a photon absorbed at ft. and a photon 

emitted at ß'   [ Fig. 2 (a)] .       In contrast,  an atom which is produced in 

level 0 and subsequently decays from level 1 at rate J». must emit a 
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sinf.'!«' photon at Si' .    An atom produp'.'d in level i absorbs ph»)tf)ns at 

a    by the reverse processes,   namely,   sinßle-quantum transitions from 

levels 1 to 0 and double-quantum transitions from levels 1 to 2.    The net 

rate of emission of photons at Ci1.  is therefore 

6?= n2J21 +  Voi "  nl(J10+J12)       ' (19a) 

and the corresponding power emitted is; 

iv{n\) = ttn'^ (i9b) 

Note that in the limit of E^— 0,  ■J;>1 and J12 should vanish,  and JQ. and 

J10 chould reduce to the usual transition rates for a two level system. 

In the formulation presented here the elementary act of transition 

from level k at t0 to 1< vel j at t is described in terms of its corresponding 

2 
transition probability,   |c. (t;t0, k)|   .    It is evident on "ery general grounds 

that the reverse act of transition is equally probable: 

|c.{t;t0, k)|2  =   ick(t;t0,.i)!2 . (20) 

This point is discussed further in Appendix A.    It immediately follows that 

^ki ~ ^ik'  anfl ^^ simplifies to 

{£= (n2- nj) J21 + (n0- nj) J01 , (21) 

a convenient form for calculation. 

It is v.orth noting that Kq. (19) utilizes the fact that the; atomic 

ensemble on the average exchanges electromagnetic energy with E.  in 

units of tiQ,,    This is interesting,   since throughout our formulation we 

have dealt with classical fields exclusively.    In fart,   in calculating the 
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emitted power it is not necessary to explicitly introduce the concept of 

(3) field quanta; instead,  one may evaluate       the expectation value of the 

induced dipole moment.   \ ^ e R * d   R,    Thon the ensemble-averaged 

polarization at Q. for atoms produced in level k is 

t 

Pjk{t) = nk "^k ^  2 R e  [ M.i0 ^ (t: to' k) e0 (t; *<>• k)\dio    ' (22) 

and the net power emitted is 

,k I v («'.) = -< S Pf(t>E'   (z. t)    >. imr average 
(23) 

In Appendix B, using density matrix notation, it is shown that Eq. (23) leads 

to I (n'j) = ■hn1^ , Eq. (19b), where^J is identical to Eq. (19a). This is 

accomplished by calculating the power emitted or absorbed by atoms pro- 

duced in particular levels, starting from Eq. (22). For instance, in this 

way it is shown that for atoms produced in level 2 [Fig. 2(a)], the emitted 

power at ft' is given by fiQ.n„.I2., while- for atoms produced in level 0 it 

is given by M2. n_J,.-. 

We proceed to calculate the emitted power in terms of transition 

rates,   Eq. (21).    The explicit form of the equations of motion    (14) are: 

16.t iö9t 
d0 = as;:e     1    d^ iße     Ä   dg       , (24a) 

-16.t 
dj = ia e        '   d0      , (24b) 

d2 = iß*e        Z   d0       , (24c) 



19 

in which 

(25) 

02 "2' j3   =   MnoAj/fl 

and i6k- i(uk- ^1 ) + — (7n" Yi.)«    In vvriting (24) anti-resonant terms have 

been neglected,   since their influence is negligible when  <^E> <^  tvw,. 

From Eqs. (1.^) and (16),  the appropriate boundary conditions are seen to 

be 

1 y. I   + Up. 
d.(t0:t0.k) = 6kje^    J r.l       , (26) 

A solution to this set of equations for all values of E9 and for weak 

E. may be obtained by means of a simple perturbation technique. This 

procedure,  however,  involves lengthy expressions.    To present the im- 

portant steps in a concise manner,  a number of symbols are introduced. 

For the convenience of the reader,  these are collected in Table I.    Addi- 

onal details regarding the perturbation technique will   be found in 

Appendix A. 

Consider an atom produced in either level 0 or 2:   In the absence 

of coupling through a (i. e. a - 0),   (24b) yields d   = 0,  while (24a) and (24c) 

reduce to the equations of motion of a damped,  two level system.    The 

solution is straightforward:  for an atom initially in level 2, 
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dg(t;tu>2)3  gilzJkL^ili:  (,.■ -.    '■     )       , (27a) 

ii ti   (t     i     9\ - i q   T - iq   T 
d^(t;to,2) =   H2JlaiIoiiJ   (q+ e - q_ <■ )    . (27b) 

In these equations the superscript u designates the parameters of the un- 

Jo 2'1 1 
coupled system    and T = t - t  ,   s = V69 + 4 Iß 1    and q+ ^ ~ ^ 69 + s). By virtue 

of symmetry, d^tit  ,0) may be obtained from d2(t;to, 2) bv replacing 

d2(to;to, 2) by d0(to;to, 0) and q+ by -q_.   For a ^ 0, dj no longer vanishes: 

an approximate expression, complete to lowest order in a, may be obtained 

by integrating (24b) with d0 replaced by d0: 

t 

djftjt^k) S io-  \ e d^(tI:t0,k)dt,:   k = 0, 2     . (28) 

t'o 

For c n atom initially in level 2,  substitution of (27a) into (28),  and using 

(13),  yields: 

* s !     ri+ n.       j 

in which ng^Qg"0!' W2r ^2" "l'   and ^^ ^~ 61 •    Similarly.  c^tM^O) 

may be obtained by substituting d" (t;t0, 0) into <28);one finds: 

S 11_ If ) 
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TABLE I:  Symbols Used 'n Calculation of Transition Rates,   Eqs. (31) and (32) 

W21   r  "2-ul ß'- MnoAj/T«. '02^2 

d1(t;to.k) = oj(t;t0,k)e2 T T = t- t 
iv.t 

i6k=iH-«k>4(T0-V q + 4(62ts) 

W62+4 ; 3l2 
r

!+   =   fi + -6l 
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uv, M R\   T    and J    mav be obtained by integrating I c  i   . 
In accordance withU8); J01

ana J2i      ^ ' 

obtained from Eqs.    (29) and (30).    over t0; one finds: 

2, o, 2 r      i     i  1     , 1 \<*\2\vr pJ^L-li + 

11+ 

9        r    , ! 1        . _J    | \ 

,2        r,fl  ,2,i ' 2 

^or^^^^K ^^^  7l-"+ i 

.2 
iq+i    ! _L + i 

(31) 

(32) 

+ ^jZ I V 7^1 (TU-TU*)    n-in. J 

n^-*^- i yi   'y1-i(Ti.-n+*)  T^it!.   -rj+i^Ji 

The constituent terms of (31) and of (32) may be combined -nd simplified in 

a  straightforward (though lengthy)1   manner to obtain: 

(33) 

T    _2^£R   ^ 
2 R      ,«.2     2    llO      -\     . (34) 
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Hero, 

A^  lUlMJH   f.,2 
4y,i 

2 

VFJ   lp ' ' (35a) 

^-RL^ißl2 , (35b) 

1 l      y">        ' (36r.) 

L^"A2 + ^20 ' (36b) 

RMA;-A')-i72l 

and 

Yij4(Yi+v 

(36 c) 

A'= n'.-w.     . 
J       J       J (37) 

(38) 

As expected,  for |ß|   — 0, J21 approaches zero while J01 reduces to 
2 2 

2 |a I     7in/ IL. I   .  the usual expression for the 0— 1 single-quantum 

transition rate.    Accordingly,  'he laser field nanifests itself through 

two separate radiative acts:  1),  it gives rise to a double-quantum tran- 

sition rate J21; 2),    it modifies the single-quantum transition rate J01. 

As discussed in Section IIIA. below,  for Q^ tuned close to w. and nL 

close to w2 the magnitude of J21 is of the same order as J^,  the ß- 

dependent portion of JQJ. Atdetuncd frequencies,  however,  J-    may 

be considerably larger than J^.    In fact,  at detuned frequencies J21 

reduces to the familiar expressior.(    ' for Raman transitions be- 

tween levels 2 and 1.    [See Section IIIA for further details.] 
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Having obtained explicit expressions for .!„. and J«.,  the net rate 

of emission at «'   in the moving frame follows from Eq. (21): 

ß   =   2 !al2 Im£)(v.O      . 

SD(v.c)= (n^ n^l^ (n2- n0) Iß 

(39) 
y20 

2   L2-2YÖ- R (40) 
AB 

As in previous notation,  the variable i specifies whether E. and E2 propagate 

in the same direction (e = +1) or in opposite directions (t - - 1).    In the 

laboratory   rest frame photons are emitted with energy f\ Sly    Thus,  in that 

frame the contribution to the emitted power from atoms moving with axial 

velocity v is 

f.«    2\a\2  Im J)(v.« )      . HD 

Setting all the y. equal, (41) reduces identically tor-xpressions obtained in Ref.10, 

where hard collisions were introduced as the mechanism of decay.    The 
(26) 

detailed features of that line shape have been fully verified        m the micro- 

wave region where velocity broadening is negligiblf.    The reader is referred 

to Refs.10 and 26 for additional details. 

In the formulation presented above the saturation effects manifest 

themselves as nonlinear intrnsity dependences of the transition rates.    Thff 

level populations,   n.,  enter into the expression for the net emission rate 

through the background excitation rates ny.,  which are assumed indepenri- 

ent of the applied fields.      '   Nevertheless,  the ensemble averages of these 
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populations,  n ,  do depend   on    the intensities of the applied fields.    These 

average populations may be computed in a straightforward manner by con- 

sidering the average number of atoms found in level j due to production of 

atoms in all possible initial levels k: 

t 

V)nk7k ^'h^o'^^v-^Vkj  • (42> 

k - - •'   k 

The right hand exprepsiun immediately follows from the definition of J. ., 

Eq. (18).   It should  be noted,   however,  that the average level populations 

n. do not enter explicitly into the expressions for the power emitted or 

absorbed at Si'   and nL    That these quantities are related to the net rate 

of photon emission may be seen as follows:   It is shown in Appendix B 

[Eq. (B19b)] that the transition rates arc connected by the relation, 

7j = 1  Jjk       • (43) 
k 

This equation is merely a restatement of the steady-state condition:   Rate 

of production into level j equals net rate of decay from all levels.    Equa- 

tions (42) and (43) may be combined to yield 

l^kJkrnrV = (Hrnj)y.i    • (44) 

k 

For j=l,  the left hand side is just^ ,   Eq. (lüa). Accordingly, this ex- 

pression may be interpreted as the steady-state form of a rate equation 

for the population of level 1, 
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H1 =   0 = i^-n^y^fi , (45) 

underscoring the fact that emission and absorption of photons must be 

accompanied by atomic decay. 

As pointed out earlier,  an equivalent way of calculating the emitted 

power at il\  is to solve the ensemble-averaged density matrix equations of 

motion in the steady state and obtain the induced polarization.    In the latter 

approach one does not generally distinguish between single-quantum and 

double-quantum processes.    Also,  the solution of the density matrix equations 

involves algebraic manipulations quite different from those used above. 

This approach is presented in Appendix C.    The method of solution is more 

or less standard,  except that in the perturbation approach employed one of 

the applied fields may be taken as arbitrarily large.    The final results 

are,  of course,   in complete agreement with Eq. ^9). 

B.    Doppler-Broadened Response 

Having obtained the power ■ mitted by the atoms moving with ixial 

velocity v, it is now necessary to sum over the entire distribution of ax:>l 

velocities,  thus obtaining   I (il. ;«).  the total emitted power at U. : 

I (SJ,;e) =   2-hn, l»!2 Im (j)(v.Odv . (4t/ T'"" '""1 

In carrying out the velocity averages it is convenient to introduce G^v), 

the velocity distribution of atoms in level j: 

n   =  N G  (v)      . f G  (v)d\ = 1 . (47) 
if J        J \J J 

-    jT. 



with N   the total number of atoms in level j.    To an incident light beam of 

propagation constant k the frequency breadth associated with G. may be 

characterized by a "Doppler width"   ku.,   with u.  as the most probable speed 

of Ci..    Where the velocity distributions are thermali/ed,  the GCvJ's are 
.1 ' .1 

Muxv.ellian.    In .some applications of Laser- Induced Doppler Line Nar- 

rowing,   however,  the • elocity distributions are non-thermal and may even 

deviate considerably from Gaussian form.    (See,   in particular,   discussions 

of th<- atomic oxygen laser,   Refs.   3, 7,   and 20. )   In general,  the integrals 

involved in obtaining (46) depend upon the specific form of the G 's. 

Nevertheless,  because in the present case we are considering the fully 

Doppler-broadened limit y/ku « 1  [u and y characterized the magnitudes 

of the most probable speeds (u 's)   and the natural widths (y.'5).   respectively) 

the resonant behavior of   I(n. ;€) becomes largely independent of the G.'s 

and it is possible to perform the averages without recourse to their specific 

form. 

The velocity averages are carried out in detail in Appendix D. 

Rriefly,  the velocity depender.ee of3D(v;c),   which enters through L. (nl)and 

L2(0^). Eq (35a,b)IandR(n,
l,n^/, Eq. (36c), as well as n-, Eq. (47),   is rather 

complicated in its present form; therefore,   as a first step,«U is rewritten 

in a form consisting of lerms having velocity dependence of the type 

HMv-H   G.(v).   1   (« + iy)*kv   ;    !   (w»+iy') + k'v   \\ 
J 3.1 1   L - i 

(48) 

in which w. w',y anci y   are real and y and y1 > 0.    As shown in Appendix D, 

in the Doppler limit y/ku « 1, 
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2« - 

- (2ffi/k>G.(-H) 
(v)dv  =  LJS  (4 na) 

k' 

and 
30 

fH.+ (v)dv - 0      . (4!)b) 

Using Eqs. (49) and then recombining the velocity averaged terms,  one 

obtains a remarkably simple expression for the total omitted power at «' : 

2 r 

I (0^«)= 27rfirial<S^ w0l (A^'k^ 

(50) 

2^ i^tto2(A2/k2)l1« =—r v ^. 0 A.-'^^2   -'h-lO^-^Q-^u-Q)! 
w2     - I       1     ^    u2 

Here, u. = ck., 
J 3 

Wij(v)=   NiGi(v)-NjGj(v) . (51) 

ArVwi    ' {52) 

Q is the factor by which the- saturated levels of the 0-2  transition  are 

broadened; 

i      4iai2 iVZ 

and « specifies whether E. and E9 propagate in the same direction (c    +1) 

or in opposite directions (« = - 1). 
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Equation (50) predicts a sharp Lorentzian decrease (for NQ
>
 K0) 

superimposed upon the broad gain profile,  an effect due to the nonlinear 

coupling of K. {?.. t) and EgC?., t;e).    Tl~e center frequency and width of this 

resonant decrease are dependent upon the relative propagation directions 

of the applied fields.    When E.  and E.. propagate in the same direction 

(c = + 1 case) the change signal is detuned from «*>.,  the center of the 0-1 

Doppler profile,   by an amount A. - —*■  A0 and is of width 1     w2      t 

rN^l+;   ^^O + V-^ Q • (54) 

On the other hand,   when E'    and E« propagate in opposite directions 

(« r - 1   .ase) the change signal appears at a frequency detuned from w    by 
wi A, = -—*. A„ and is of width 1       u9     2 

rR=  Yl+j^(70+72)+70jQ ' (55) 

which is broader than r,T by 2 7nQ,  twice the saturated width of the middle 

level.    The frequencies at which the e = + 1 and « = - 1 change signals occur 

have the following significance.    Due to the Doppler effect,   each applied 

field couples resonantly only to atoms within a narrow band of velocities. 

R   ferrirg to Eq. (2), it can be seen that E.  resonates with atoms of 

velocity near v-  ,   given by K.-k. v. - ", •    Similarly,   E« resonates with 

atoms of velocity near v„,  given by r.ly- €k„v„- w«-    In general,  the 

velocity bands centered at v    and v,, are distinct and do not overlap.    How- 

ever,  at particular frequencies of ih" applied fields,   the two bands will 

merge into a single one.    Equating v. and v^ fort - + 1,  this condition is 
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sc-r'n to br; 

w 1 

which is the location of the center irequcncy of the corresponding change 

signal. 

Evidently,   the applied fields can couple to each other most effectively 

when they resonate with the respective transitions of atoms within a narrow 

band of velocities.    Complete substantiation of this point follows from a de- 

tailed inspection of the frequency behavior of the rest frame response-- 

determined by the corresponding transition rates-- tor a particular atomic 

velocity band.    A full discussion is (Jeferred to Section IIIA.    Several re- 

marks,   however,   may be useful at this time.    A glance at Eqs. (33) and (34) 

reveals that .lr.- and .K. are rather complicated functions of Ol and OL. 

Furthermore,  the frequency characteristics of J».  are quite different from 

those of J91.    In the fully Doppler-broadened limit,  however,   a number of 

simplifying cancellations occur and many details of the responses of in- 

dividual velocity bands average out.    In fact,   in this limit the velocity- 

averaged 2— 1 transition rate becomes equal to the negative of the ft- 

dependent portion of the 0-- 1 transition rate,  a fact responsible for the 

particularly simple form of the final expression for the emitted power, 

Eq. (50). 

Despite the fact that the e - +1 and « = - 1 change signals are symme- 

trically located about the 0 - 1 center frequency,  the corresponding widths 
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differ.    This asymmetry results from the resonant behavior which enters 

J21 and J01 through tho quantity ^ = [(^\- ^ ' ^\2^ ' iy2l = 

l(n]2-wl9) - i 721] - vCk^-c k2).   Note that in contrast to L, and L«, the 

velocity dependence of R differs strongly for e = + 1 and  i - -13 particularly 

if w^ and w» are comparable.    For example,  in the important case in which 

I ^2" wi ' v/c << "Voi'  ^ (€ r + 1 } becomes essentially velocity independent, 

while R (c = - 1} remains strongly velocity dependent.    Bearing this fact in 

mind, the different widths of IV. and !„ can be understood by inspecting 

(33) and (34).    See Section IIIA for further details. 

As discussed in Appendices C and D,  the preceeding remarks also 

apply to the other level configurations of interest.    For example,  the ex- 

pression for emitted power for the "V" configuration [Fig. 2(b)],  which 

is the inverted version of the level scheme treated in this section,  is 

given by the negative of Eq. (50),  as one might expect.    Equation (50) also 

describes the power emitted by the cascade configuration [Fig. 2(c)]  "/hen 

the factor e Q appearing in the imaginary part of the denominator is changed 

to -cQ.    This has the interesting consequence of interchanging the positions 

of the broad and narrow change signals (for a given value of n„),  a 

"geometrical" effect arising from the different way ir which the fields 

co1.pie to a cascade system. 

C.    Extension to Standing-Wave Fields 

The extension of the above considerations to cases where one or 
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both of the applied fields arc in the lorm of standing waves is straight- 

forward.    A;; discussed above,   nonlinear   coupling occurs when two (or more) 

travelling-wave fields,  at least one of which can saturate its transition,   are 

Doppler-shifted into resonance with thr   iame narrow velocity band of atoms. 

As noted in the introduction,   each standing-wave field may be decomposed into 

travelling-wave components of equül amplitude propagating in opposite 

directions.    As long as the strong field is detuned from the center of its 

broad Dopplnr profile (i.e. ,  ! i2   - UJ   ' > Y2n).    its components resonate with 

atoms in distinct bands symmetrically located about the center of the velocity 

distribution.    (In this respect the tuning of a weak standing-wave field is 

unimportant,   since its travelling-wave components cannot couple to one an- 

other. )   Then the   nonlinear  coupling can occur only when the frequencies of 

the applied fields arc such thnt one of the travelling-wave components of the 

intense field and one of the weak field are Doppler-shifted into resonance with 

the same band of atoms.    One such possibility couples togeth'-r travelling 

waves propagating in the same directions and will be recognized ;is the 

c - *- 1 condition of l'.'q. (^ß).   In aOdition,   there is the possibility of 

coupling between oppositely-propagating travelling waves,   which is Just 

the « - - i condition of Eq    (S6).    Consequently,  the broad and narrow 

resonances appear simultaneou:  y,   symmetrically located about the 

0- 1 center fi vquency. 

To illustrate the preceding remarks,   consider an intense standing- 

wave field of amplitude 2 E^ and a weak travelling-wave field of amplitude 

E" resonating with the respective transitions of a Doppler-broadened three 

lev«, isystem. For th*? presor'.  assume E« to be detuned from «„.    This 
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situation is (Urectly applicable to the example presented in the introduction 

where E. (ii.) probes the lineshape of an optical transition sharing a 

common level with an oscillating gas laser transition (Fig.  1). 

For concreteness.   suppose- the velocity distributions G.(v)[Fq. (47) | arc al! 

Maxwfllian at temperature T:  In the aljsence of the laser field (Fo- 0), 

^(ii  ),  th*- spectrum of power emitted at the probe frequency,   is just: 

^^(n^ftyNV2^'*!2     e^^ . (57) 

which defines-^ (n, ),   the usual expression for power emitted by the Doppler- 

broadened 0-1 transition induced by weak travelling-wave field E. ; here, 
1/9 

u - (2K TM)       is the most probable speed,  M is the atomic mass,  and  K 

is TJoltzmann's constant.    In the presence of the laser field, ^(n,) is 

strikingly modifif d:     from the e ^ + 1 and e = - 1 cases of Eq. (50) ore obtains, 

(58) 

J(n,)-~4fM,)\ 1 + NrN2 2 - 2 tiimj L ^+ L___lj 
V      1     ^       ' N.-N,   70^    -2 (A.+-a^iA>ilB    (A.-a^ A,)+iÜJU 

u       i '      Ci2    -        2 •      0J2    "        2 

so thai narrow und broad change signals idertical tf> those described above 

for the travelling-wave rase appear simultaneously on opposite sides ofw.. 

In a number of important applications Yj- "^ << ^O'   causing rN ancl rn to 

differ enormously. 

Equation (58),  which was originally presented in Ref. 7 ,   has been 

written in a form valid for both cascaae {n - - \) and "inverted-V" (CT - + 1) 

coupling configurations,   Figs.2(c)and 2(a), respectively.   The corresponding 
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expression for the "V" level scheme,   Kig. 2(b),   is given by the negative 

of (58) with 7 - + 1.    These statements are based on the extension of Eq. (50) 

to the other coupling schemes,   as outlined in Appendix D.    See also the 

remarks at the close of Section IIB. 

In the case of weakly saturating laser field,   r    reduces to 

2*T10 + 07^ 720" y0^ and rB t0 2^T10+arL 720^  vvhich agrees with exnres- 

sions previously obtained by other methods. It is easily seen that 

in that limit,  by symmetry,  the case of w2> u.  may be obtained by simply 

interchanging u    and w    in (58). 

The interpretation of (58) as it applies to the spontaneous emission 

version is presented in Section IFB. 

Equation (58) is valid as long as the intense standing-wave field is 

detuned from its atomic center frequency.    When both fields are tuned to 

the centers of their respective gain profiles all of the travelling-wave com- 

ponents can couple to the same atomic velocity band (namely,  the one with 

negligible component of velocity along the z-axis).    Consequently,  the above 

considerations,  which are based on the coupling of pairs of travelling  waves, 

( 2 ) becomes inadequate.    A standing-wave analysis which specifically includes 

this possibility has described the third-order interaction of E   and Ei  for the 

special -ase in which levels 1 and 2 of the "V" configuration (Fig. 2(b)) 

are assumed closely spared (I to-- w   j v/c « y).    [Note that the analysis 

of the cascade configuration.   Fig. 2(c),  in which the- middle level lies 

about half-way between the other two levels,   follows identically, j   The 

(28) analysis      , based on a density matrix calculation shows th^t as E„ is 
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tuned close to the center irequency of the 2-0 transition an additional 

contribution to $(&,) arises.    The latter contribution,  however,  may be 

neglected in virtually all cai^es of interest because it originates in a 

polarization with spati 1 variation other than that of the inducing field. 

Specifically,   P. (z, t), the velocity-averaged polarization at frequency 

n    induced by a pair of standing-wave fields E1 (z, t) = Re J E°cos k1 z exp iil.t I 

and E9(z, t) = Re J E?cos k„7. exp in9t l is of the form    ', 
) 

P1(z,t)= Re Jxacos k1z + Xbcos(2k2-k1)z;- E°e . (59) 
I     - - ' -      ■      J 

where X    and X,  are the complex susceptibilities associated with the response 

at il       The former term is cKie to the interaction of pairs of travelling- 

wave components as discussed above,  and may be obtained in our treat- 

ment from the sum of the ensemble-averaged polarizations x (v. «a + l) 

and x(v, c = - 1J [Eq. (C14)] integrated over velocities.    The latter term, 

in contrast,  is due to the coupling of several travelling-wave components 

and only becomes large when n, and n_ are tuned close to their respective 

atomic center frequencies.    We are thinking of a polarization induced in a 

sample cell placed with a resonator.    The net emitted power may be 

obtained from the time average of P. (zJt)E1 (z, t) integrated over the 

volume of the sample cell.    Consequently, the X   term leads to a contri- 
EL 

bution to the emitted power identical to the limiting expression of Eq.  (58) 

2 2 for w   % w    and |/3|     «y  .    This contribution is proportional to the length 

of the sample cell and is independent of its position within the resonator. 
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In contrast,   the contribution clue to the X    term vanishes when the applied 

fields are detuned several natural widths from their atomic center fre- 

quencies.    Furthermore,   for S2   and il« tuned close to their center fre- 

quencies the latter contribution is highly sensitive to the exact location 

and length of the sample within the resonator,  and in virtually all cases 

of interest is either negligible for all locations withn the resonator,  or 

may be positioned to become so.    Inspection of the treatment of Ref.  2 

indicates that Ihese conclusions are also applicable for cases where 

"1^2- 
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III.    A PF31.1 CATIONS AND DISCUSSION 

In this Part important features of the preceding analysis are 

illustrated by means of several discussions and applications. 

_A .    Frequency Characteristics of the Rest-Frame Response 

It will be recalled that the Dopplf.r-broadened line shape was 

obtained by summing the ensemble-averaged response of a particu- 

lar velocity band over the distribution of atomic velocities.     This 

response was formulated in terms of J-. and JL. [Eqs.  (3 3) and (34)], 
i 

the transition rates associated with the emission of photons at  n.. 

Let us now inspect these quantities in the atoms1   rest frame, prior 

to Doppler averaging.    To avoid unnecessary detail, consider the 

2 2 limit of these expressions for weakly-saturating E2 (! /3  !    « y ). 
(29) 

From Eqs.  (35) - (38) one finds: 

Joi(^'S^2!^277~2-+Jo'?, ^ 
i 1-1 i 

4 =2|ff,
2iSftmf^r- '   (TL_.^{-L...JL})1. (61M 

■   RL^ t       L2Li H"     L2 

As explained earlier, J2    is the 2-♦ 1 transition rate, due to double- 

quantum exchanges with the applied fields; the first term of J0   is 

the 0 -»1 single-quantum transition rate in the absence of E2.; and 
3 

the second term,  which we have denoted as J0 ,  c3scw>es the nonlinear 

dependence of the 0 -* 1 transition rate to lowest order in F^. 
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The frequer ,y behavior of J9    and J-    is determined by the 

quantities L, = (D,  - w,) + i-y    ,     L« = (-ß« + u.,) + iv       and 
1 1        .'        'lO 2 2       2 20 

• i 

R = (ft,   -«,)"■ (ß«   - w0) - i-y     appearing in the denominators of 
11 21 

the various terms of (60) and (61).    These quantities exhibit distinct 

types of tunability:    L and L2       may be associated with the usual 

two level behavior,  in which one of the applied fields resonates with 

a pair of energy levels; R    , on the other hand, involves the frequency 

of both fields and becomes large when their separation approaches 

-I -1 
the 2-1 level spacing.    Terms involving L.      and L9      together are 

strongly enhanced when 

n!-«. . 

"2 

simultaneously, a condition equivalent to Eq. (56), as discussed in 

Section IIB.    Terms in R      are also enhanced under those conditions. 

Notr, however, that R     remains resonant for the less stringent 

condition 

n2  - Qj    s    w, - wj      , (63) 

which does not necessitate resonant coupling of the two level type 

[Eq.  (62)].    Close to resonance [Eq.  (62)]  .L,    and J'. exhibit different 

line-shape characteristics.    Nevertheless, in this region they are 

comparable in magnitude.    A few natural line widths away from 

resonance, however, J«. begins to dominate,  becoming larger than 
o 

J0'   by a factor ~y/ \L. !.    In fact, in this limit .1^.  reduced to the 

(30) 
familiar expression for the Raman transition rate, 

.T     -2!cy!2'3    2  fLi__ , (64) 
-1 2 2 

IRriLj! 
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and j'     becomes negligible.    Thus, double-quantum transitions 

predominate when level 0 is detuned from resonance.    These 

features have been well substantiated1        in the microwave region, 

as stated above. 

In considering a pair of applied fields resonating with a broad 

atomic velocity distribution, it is possible for atoms within a par- 

ticular velocity band to satisfy condition (62); consequently, in our 
ß 

case J0.   and J^. contribute comparably to the velocity-averaged 

response. 

The foregoing discussion is directly applicable to the other 

energy level configurations of interest.    Note that in extending 

these considerations to the cascade case [Fig.  2(c)), the "Raman" 

condition [Eq.  (63)] should be replaced by:   n. + n9 = u. + «*)„. 

See Appendix C for further details. 

So much for the frequency response of a particular velocity 

band.    The Doppler-broadened response is obtained by summing 

this quantity over the entire distribution of atomic velocities.    As 

pointed out earlier, in the present case these averages [Eq.  (46)] 

have been carried out in the fully Doppler-broadened limit (y/k\x«l). 

resulting in a number of cancellations which greatly simplify the 

final expressions.    Thus, in thir limit the velocity average of .!„ 

becomes identical with the negative of the velocity average of J.. 

This may be easily seen in the special case of weak saturation of 



- 40 

the 0-2 transition,  Eqs.  (60) and (61),  where the first term of 

J-. averaged over a broad distribution of velocities vanishes; the 

remainder is equal to -J    .    It is important to point out that such 

cancellations do not occur in higher orders of y/ku.    For instance, 

the complete cancellation of y   in IV, which occurs in the case of 

(u./aO «  1 (see Section IIIC, below) does not occur in the next 

order of 7/ku. 
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B.    Spontaneous Emission Line Narrowing Effect 

We turn next to the manifestation of the Laser-Induced Doppler I   ne 

Narrowing Effect appearing in the profile of spontaneous emission from 

either of the levels of a Doppler-broadened gas laser transition.    In this 

case the interaction of a standing-wave laser field with the 2-0 transition 

(Fig.  3 ) considerably influences the 0 - 1 profile of spontaneous emission as 

observed along the laser axis.    This influence arises both through single- 

quantum and double-quantum exchanges with the radiation fields in a 

manner completely analogous to the induced emission case,   and the resulting 

line shapes are identical.    In fact,  the 0-1 spontaneous emission spectrum 

follows the spectrum of emission induced by a weak monochromatic probe 

field tuned through the resonance when the population of level 1 is ignored. 

Accordingly.  Eq. (58) ^ives the required sponta-JOUS emission spectrum when 

N. is set equal to 0 andtyiU.) is interpreted as the usual unperturbed Doppler 

profile (E2= 0) due to 0 - 1 spontaneous emission-    In the quantized field 

calculation of Ref. 43 the laser-induced spontaneous emission profile is ob- 

tained directly.    Those results are in exact agreement with the weak satura- 

tion limit of our results as they apply to spontaneous emission,   given below. 

To amplify the foregoing remarks on the applicability of the classical 

field treatment to the spontaneous emission case,   recall the discussions of 

Section IIA,   formulated in terms of the response (in the atoms' rest farme)of a 

particular velocity band of three level atoms to a weak monochromatic probe 

field. E.(n.). as influenced by a second field, E„iSl~). strongly interacting with 

the coupled transition.   Suppose that the monochromatic probe field is replaced 

by a wave packet distributed in frequency about Q*.  over a narrow interval 

dn' « 7 and incident in a given direcdon within a small solid angle 

dS:    Then all of the considerations of Section IIA follow identically,  where the 

field intensity c E^2/8 a-    is   interpreted   as an   average   quantity. 
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Since     do   « y,   the  response at ft'    is  independent of the specific 

form of the frequency distribution of the wave packet.  Accordingly,  let 

us express this average field intensity as 

-^E°2  = Idji1 dS . (65) 

where I represents the average intensity per unit frequency interval and 

solid angle.    In terms of 17,   the average number of light quanta per mode 

of the (polarized) radiation field,  the field intensity becomes 

IdnjdS=F—i-^dßjdS   . (66) 
STT' c 

The transition rates,  J.,,   representing the absorption and induced emission 

processes described in Section IIA, may therefore be written in terms of 17 by re- 

placing E°2 in Eqs.(33) and (34) by  i7 (fißj 3/7r2 c4) dQ^d S .   (Note that g0* 

enters into Eqs.( 33) and (34) through la!2,  defined as | ^ j 0 E°/2Ti I 2. )   To 

explicitly emphasize the dependence on i/,  let us write 

Jik=v l>ikdn,ldS <67> 

_» 9       ^ 2   3 9 
with £j.. = (|u . 0I    ft'"/41h7r  c  )J../ lo!   .    The effect of spontaneous 

emission at frequency U    may be included by simply replacing F by i7+ 1 

(31) 
in the emission rates, J0. and J«.,       Consequently,  for v = 0,  the 1-'0 and 

1-» 2 absorption rates vanish,   and the 0-* 1 and 2-* 1 emission rates reduce 

to J^Qi dni ds and j^oi d"l ciS'   r(-sPectively'    Using Eqs.(l9a) and (19b) 

the power spontaneously emitted in frequency interval dft.. and solid angle 

dS is seen to be 
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Note   that   in   this   expression   the n, coefficient   has   vanished   because 

for   r  - 0   the   absorpiinn   coefficients,Jj 1C and J^..,,  also   vanish. 

-   2 Trür \ß\   -»0 Eq.  (68) reduces to the usual expression for spontaneous emission 

from the 0-1 transition.    In applying this formula one should interpret n ._ 

as X^    (R) «. • M ^0 (R)d   R where ß is the electric1 dipole operator, c9 is the 

polari/.ation of the laser field,  and^.  is the polarization of a spontaneously 

emitted photon.    Thus,  the angular and ^olari/.ation properties of the 

spontaneously emitted radiation depend on the characteristics of the partic- 

ular states involved. 

Doppler broade.ing and standing-wave effects may be included 

in exactly the same way as in Sections IIB and II C,   respectively,  con- 

sidering corvt'ibutions only from that portion of the spontaneous radiation 

emitted into a small solid angle in the forward {+?.) direction.    Thus, 

as siated     above,  the spectrum of spontaneous emission from the 0 - 1 

transition is given by Eq.(58)  with N^ 0 and jy "2   ) inier pitted as the 

usual Doppler-nroadened spectrum of" power emitted spontaneously into 

dfl  dS with given polarization in the absence of the la.',  r field.    Kquation 

(58) has been written in the form valid for both folded {(j- + 1) and cascade 

(a- - 1) cases.   Figs. 2(a) and 2(c).   Suppose, for example,  the laser field is 

tuned to a frequency below its center frequency, w«1 Then the 0- 1  spontane- 

ous emission change signals in the cascade csse,   which result primarily 

from double-quantum transitions between levels 2 and I,   are in the form of 

resonant increases, with the rx. resonance above w,,  the 0- 1 center    frt- N 1 

quencv,  ami the !„ resonance below w   (Fig.   3).     In   the   folded   case. 
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on the other hand,  the change signals,   which primarily result from singlo- 

quantum transitions between levels 0 and 1,  are in the form of resonant 

decreases,     tui the positions oi T.   and r,. arc- reversed iFig.   1(b)]. 

This reversal is a purely geometrical effect arir.ing from the different 

way in wh ch 'he fields couple to the respective transitions in the folded 

and cascade cases.    (See Appendices C and L). )   Similar conclusions were 

also obtained in Ref. 4. 

Double-quantum transitions are a phenomenon well known since 

(32 ^ the early days of the quantum theory.    Historically,  Eherenfest      'was 

the first to suggest a model capable of correctly describing sequential 

decays among levels.    This model was motivated by the correspondance 

principle and adiabatic theorem of the old quantum theory.    Results 

based on the Eherenfest model were later found to be in agreement 

(33) with the quantum-electrodynan.ical treatment of Weisskopf andWigner. 

Those ideas were all formulated with spontaneous decay in mind.    How- 

ever, in the presence of an intense field and close to the resonance 

condition '.7.  = w. and Q,, - w.,,  an additional effect becomes important: 

he intense field can considerably perturb the usual single-quantum 

emission rate of a coupled transition,       an effect comparable in mag- 

nitude with the double-quantum emission rate.   Older treatments have 

not been concerned with the former effect; line shape behavior of the kind 

described in this paper involves an interplay of both types of processes. 

(32   33) It may be; illuminating to outline the Ehercnf« st picture.       ' ' ' ' Consider 

the cascade system of Fig.  2(c);    following Eherenfest, assume that when 

an atom »s in level j (energy eigenvalue: tiW.),  the probability that its 

energy lies in the interval between ^>; and My ^ dx) is a      )rentzian 

centered about ^ W. and of width IS v.: 
1 .1 



jKrj/2)dx 
p^xldx  (59) 

J j > 
(W."X)ä+{Y./2) 

J J 

(normalized to unity).    Consider an aiom initially in the upper cascade 

state (level 2) which underwent decay via level 0 to level 1 ,  accompanied 

by two photons successively emitted at Q. and Q.,, (in the atom' s rest 

frame): the joint probability that the atom had energies  fx,  tiy,  and rz when 

it was in levels 2,  0,  and 1,  respectively,  is P>(x)I:,
0(y)F  (z).    Evidently, 

the photons emitted in that event were of frequencies Q.  = x-y and fi   -y-z. 

i t 

Substituting n. and n9 into this probability expression and integrating 

o^er all possible values of y, one obtains the total probability of an atom 

having successively emttsd photons at i.. and Slt): 

\ 1 I dy 

(Wg-fig-y)2 M72/^
2 (W0-y)2 + hQ/2)2 

(70) 

(W1+n,
1-y)2M7i/^)2 

(The unimportant numerical factor has been set equal to unity. )   upon 

integration   (which may be performed as in Appendix D) Eq.  (70) yields a 

result identical in frequancy dependence to the lowest order expansion of 

or 2 -*  1   emission rate,  Eq.  (60) or,  equivalently,  the expression forJn M, 

obtained from Eq.  (67).   (Equation (60) is written in general form.   Sf  Table II) 

A recent discussion^', formulated on the basis of two-photon 

transitions induced by a weakly-maturating laser field,  has analyzed 

the frequency profile of spontaneous emission arising from the lower 
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laser level (Fig.   3).    This discussion is presented for the limiting case 

Ypi~* 0-    ^ is easily seer that in this limit Eq. (70) involves a 6-function, 

' ' -2 
becoming:   6(n9 + fl.   " Wo '   wi)!Li I     ■ ^e discussion of Ref. 5  is equiva- 

lent to integrating the latter expression over the atomic velocity dis- 

tribution for  f  - +1 and e  -  -1.    In addition,  Ref. 5  states the line- 

shape result for arbitrary 7., a result in agreement with the weak 

field limit (Q ^ 1) of our ixprcst-ion (58) as it applies to spontaneous 

> Eh( 

(34) 

cmibsion for a      -I and Mf^CK    The latter result utilizes the Eherenfest 

model, being obtained by averaging Eq.   (70) over velocities. 

S.ich an analysis, however,  ignores the important role played 

by background atoms, N0, produced in level 0,  discussed above.    This 

background population can ho sizeable,  since in practice the populations 

of upper and lower laser levels often differs b> only a small amount. 

Th j extension of Eherenfest1 s model to include this effect does not follow 

in an obvious way.    To emphasize the significance of the role played by 

background atoms in level 0, consider a cascade system in which only 

level 0 is populated (i. e.  N.   - N9 = 0).    Then in the rest frame of an 
1 

atom, an applied laser field at n,   will diminish the transition rate at 

Q , leading to two holes of width IV and rN superimposed upon the 

velocity-averaged emission profile--an effect entirely due to the depen- 

dence of the single-quantum emission rate on the laser field intensity. 

On the other hand, the analysis of Rcf. 4 does include the influence 

of these background atoms, although that treatment does not make explicit 

the distinction between single-quantum and double-quantum events. 
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C.    Mode  Crossing Experiments 

The narrow resonancf,   ]_,   is hoing utilized in a series of precision 
(12) measurements of hyperfine structure iü x» non and G-fuctors in atomic 

(13) oxygen       •    In these experiments u.   is close to tu« and n. is considerably 

less than Pp.    Levels 1 and 2 are a pair of tunable Zei nan components 

optically coupled to a common level,   level 0..   and the monochromatic fields 

Ej and E2 are two oscillating laser modes of fixed frequency separation de- 

termined by the eavity length.    As the Zeeman levels are magnetically tuned, 

resonant behavior occurs when their splitting approaches the frequency sep- 

(11) aration between the two laser modes.    We shall therefore refer to this effect 

as "mode  crossing".   Important aspects of mode crossing have been pre- 

sented in Ref.   2; some of these are discussed here,  for completeness, 

cogether with additional details. 

A simple version of the mode crossing technique is shown in Fig.4: 

The output of a Brewster-angle gas laser oscillating in two modes is 

attenuated (or amplified) as it passes through a magnetically tunable external 

sample cell.    The respective laser modes should resonate with the two 

coupled Doppler-broadened transitions of the sample gas.    F'or example, 

in cases where the laser levels themselves consist of closely spaced tunable 

components the sample cell may be a discharge tube containing the same 

i7as as the laser tube.    The intensity of the transmitted laser beam is 

studied   as   a   function   of   the level   separation.    At low field intensities,  where 

saturation effects are negligible, the attenuation changes slowly as the levels 
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are tuned,  appreciable changes occurring only when the frequency sep- 

aration of the Zeemau components varies by an amount comparable to the 

Doppler width.    However,  when one of the applied fields '".J saturates 

the transition with which it resonates (2-0),  the attenuation of the coupled 

transition (1 - 0) undergoes,  in addition,  a sharp change when the appropriate 

frequency condition is met.    The expression for this behavior is readily 

obtained from the e =-H 1 case of Eq.(50)      Let us specialize to the limit- 

ing case,   relevant to mode-crossing studies,   in which 

|w2- u^i-y « y (71) 

where u and y characterize the magnitudes of the most probable speeds 

(u^'s) and the natural widths (Y-'S),  respectively.    Assuming the velocity 

distributions are all Maxwellian at temperature T,  the power emitted or 

absorbed at ft.  in a small length of the sample gas is given by: 

r N   - \' 9 
- fwo  J   ,        2      0 21*31     r 1 1 

in whichjöK^-) was introduced inEq. (57)    £2«  =£2_~^i» u21 " w,?~ w1'  rn^ 

the other symbols were defined in Section IIB,    The above expression 

predicts a Lorentzian decrease of width r^ = Yi + Yo® as t^e Zoeman splitting, 

"nj.   approaches the mode separation, ^ni*    ^n t'ie ^m^ 0^ weak saturation 

(Q-* 1). (72) reduces to an expression obtained in Ref. 2. 

There are two noteworthy features of this behavior:  First,  that the 

mode crossing frequency condition depends only upon the separation be- 

tween the laser modes,  being insensitive to their individual frequencies; 
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and,   second,  that the width of the mode crossing resonance is the- sum of 

the widths of the "crossing"   levels (including power broadening effects), 

and is essentially independent of the lower level width, y«.    These two 

characteristics,   which follow from the approximation of closely-spaced 

crossing levels, (71),   have far-reaching implications regarding the re- 

quired frequency stability and resolution of the mode crossing technique 

as utilized in precision spectroscopic measurements.   In connection with fre- 

quency stability,  note that although the frequencies il .  and il,, of a free- 

rurning laser may wancer over a sizeable portion of the broad Doppler 

profile. j^CQ.),   during the observation time, their separation will remain 

virtually fixed (see Fig. 5 ), thereby insuring the stability of the observed signal. 

In regard to the frequency resolution,  note that in many important gas laser 

applicatiors xhe widths of the upper levels are much narrower than that of 

the lower level; the complete cancellation of the latter width in Eq. (72) 

therefore makes for a relatively narrow signal.    This prediction is strik- 

(12) (1 3) 
ingly born out in mode crossing studies in xenon     and oxygen    ' , where 

the observed change signals are not only much narrower than the Doppler 

width   but are also more than an order of magnitude narrower thun the 

known radiative widths of the lower level.    Tt is emphasized that these two 

simplifying features are characteristic of the approximation of closely- 

nr)) spaced crossing levels/' '    Eq, (71),   and do not occur in cases where 
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It should be noted that Eq. (72) holds for the case in which 

E.  is weak and E9 may fully  saturate its transition:  the case where both 

fields are intense is not included.    \. vertheless,   the simple behavior- of 

that expression,   as well as Eq.  (50),  its more general counterpart,  is re- 

vealing of the effects of high order saturation.    It should also be noted 

that when both fields weakly saturate their respective transitions,  the 

saturated response up to "third-order" may be recovered from (TO). 

This may be achieved by expanding (50) to lowest order in |ß|   ,  and 

noting that there must be symmetry between a and ,3.    Thus,   aside from 

the usual slowly varying third-order background term,  the third-order 

response at Q.  is just given by (50) with Q = 1,   with an analogous expres- 

sion    for the response at Sip.    This result is in agreement with Ref.   2. 

As an example,   Eig. 6    depicts a mode-crossing signal observed 

in xenon  at  about 20 gauss.    '' The experimental arrangement was 

similar to the diagram of Eig. 4 ,   except that to enhance the signal-to- 

noise ratio a small audio frequency component was superimposed on the 

slowly-varying D. C.  axial magnetic field.    The detected signal was fed 

into a phase-sensitive amplifier tuned to the motiulation frequency,   and the 

output was recorded as a function of, magnetic field.    Accordingly,  the curve 

obtained in Eig. o    is actually the derivative    of the mode  crossing resonance 
(37) 

of Eq,  (72).   The laser source was a 3. 37JU xenon laser with modes separated 

by about 50   MHz.   The crossing levels were pairs of Zecman components of 

the upper laser level coupled to a common lower level.    The 1  meter mag- 

netically tunable sample cell contained   a xenon gas discharge at a pressure 

of 11[JL Hg,    so that collision broadening was negligible.    The observed 

S-factor   is   0.929;   the   observed   width   of   1/2    MHz    is   consistent 
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(38) 
with estimates        of  the   upper level of the J. 37|A transition,   and 

about 30 times narrower than that 01 ths lower level. 

It is sometimes convenient to place the sample to bo studied within 

the resonator of the laser source, a technique useful,  for example, 

when the laser transition itself consists of closely-spaced tunable levels. 

As disc -ssed in Section IIC.  the standing-wave fields within the laser cavity 

produce an additional change signal of width rR. due to coupling between 

oppositely propagating travelling-wave components of E. and E«, symmel- 

ricaiiy located about the center frequency from the mode-crossing reso- 

nance.(Sce Fig. 7. )     Applying approximation (71) to the expression for 

rR , Eq. (55),  one finds r„ -   y. + 7, Q + '~ycQ,  which can be considerably 

broader than the mode-crossing resonance {of width r«r). 

The condition for resonance is   ^.^ o , r vj   + ti>9.    In contr?st to the fre- 

quency condition for mode crossing,  this condition is highly sensitive to 

the absolute frequencies of the Individual modes, so that a small instability 

can caust* the modes to drift away from resonance      0*"ig.  7);  conse- 

quently, observation of the latter signals would require absolute frequency 
(39) 

control as in Lamb-dip experiments. 

Finally,  we note that in mode-crossing eyoeriments performed within 

the laser cavity effects due to saturation broadening are enhanced.    The 

overall behavior of these effects is expected to be similar to Eq. (72),   i. e. , 

to broaden the resonance by the saturated widths of the crossing levels. 

Indications of such broadening has been observed in several instances. '    ' 

For example,  in mode-crossing experiments performed on the xenon 3. 3T|i 

(1°) transition within the cavity,     the widths observed are generally somewhat 

brodder than that of Fig. 6. 
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'L   Spontaneous Emission Line Narrowing Experiments 

The spontaneous emission line narrowing effect 'las been 

(15) utilized in measurements of isotope shifts    "   and line width para- 

meters^    ' in neon.    At the time of the initial observations, a de- 

tailed picture of the line narrowing effect predicting differing widths 

for IV and rR   was not at hand.    The width difference was not observed 

in these experiments since in the neon transitions studied,   rv and rR 

differ by only a small amount:   its observation requires good laser 

stability and high finesse Fabry-Perot analysis.    The observation of 

different widths in spontaneous emission in neon has recently been 

reported by Holt1     . 

E.    Concluding Remarks 

In concluding, we would like to make additional comments con- 

cerning several aspectr of the Laser-Induced Doppler Line Narrowing 

Effect. 

In the present discussions the atoms have been assumed to relax 

by means of radiative decay.    It should be noted, however, that Eq.  (41) 

and its subsequent average over velocities.  Ec.  (50), also correctly 

descr-He relaxation through Hard collisions when the 7. are interpreted 

as phase-disrupting hard collision rates.    In fact,  in the treatment of 

Kef. 10, which agrees identically with the limiting case of (41) of the 

7   all equal,  relaxation was introduced via a single collision rate.   The 



detailed features of the line shape in that limit have been fully verified 

in the microwave region,  where Doppler effect is negligible   and the 

linewidths are "ntirely uue to collision effects. 

On the other hand,  in situations where soft collisions--collisions 

in which phase disruption is incomplete--play an important role, additional 

details not considered here further iniiuence the line shape.    Treatments 

such as Ref. 40   may be readily extended to this problem.    Inclusion of 

such effects is highly desirable in view of the fact that the pressure 

dependence of the Laöer-Induced Doppler Line Narrowing Effect is 

observable in a number of rather different experimental contexts.    The 

classical field treatment presented here seems to lend itself more readily 

to inclusion of collision efierts,as opposed to quantized-field treatments. 

The line-narrowing effect presented here is also potentially 

applicable to high-resolution microwave and optical studies of inhomo- 

geneously-broadened solids.    In gases the Doppler effect causes the 

frequency of an applied travelling-wave field to appear different for 

atoms of different velocities.    In solids,  on the other hand,  the fre- 

quency of an incident field appears the same to all of the atf>ms; instead, 

inhomogeneity of the crystaline fields may result in a broad distribution 

of atomic center frequencies.    The procedure for including inhomogen- 

eous broadening effects is similiar io the Doppler-averaging procedure 

employed above.    However, since  f.Tx0d atoms do not discriminate 

between relative propagation directions of the applied fields, line- 

narrowing experiments in solids will produce only a single change 

signal, the analog of »he  € = +1   change signal observed   in a Doppler- 

broadened gas.    Another important distinction is tluir the simple form 
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ol the relaxation rales introduced into the Schrodinger equation i^ no 

longer valid, since non-radiative relaxation mechanisms generally 

dominate in solids.    These may be introduced in a density matrix 

formalism as in  \npendix C by considering appropriate decay constants 

for the diagonal and off-diagonal density mmrix elements.    The inclusion 

of        h effects will somewhat modify the characteristics of the observed 

change signal. 
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APFKNIHX  A:   SYMMETRY   liKTWEKN 'll{ANSri ION HUmAHim'IKS 

It is state! in Sfction IIA that  |c.(t;t  , k)!"',  thv transition pro- 
j        o r 

bability of an atom produced in level k at t0 to level j at a later ti.ne t, 
2 

is equal to I c.Jt; t0; j)!   , the reverse transition  prcbahility. 

This  symmetry may be demonstrated by  direct  calculation.    We 

begin by restating the perturbation technique of Section IIA in a more 

formal manner.    The equatio) s of motion for the d. (t. t0, k) are given by 

(24).    To obtain a solution for all values of [J and ;«'! ■*< 1,   the d. may be 

expanded in powers of o: 

d  (t;t0.k) = d"(t;t0. k) + od,
)(l;l0.k) <-a2d"(t;l0.k)+ ...       (Al) 

where,  as before,  the superscript u designates the parameters of the un- 

coupled system (o-= 0).    We require t  solution complete to Ofo),   con- 

sequenMy only the two leading terms of (Al) nerd hv retained.    Inserting 

these into (24) and equating coefficients of like powers of a,   one obtains 

the following sets of equations: 

>    ..,  i62t  u c. =  i ß e ^ , 

v     - i 6,, t .u        -,* 2     ,u d2 =  iß    e d0 

d. -   0 ; 

-   i 6. t i 6„ t 
d0 =ise ^ + K>. d2 

il2 ^ i3    e       "    d0 

d.  = ie      ^ d0 

(A 2a) 

(A 2b) 

(A 2c) 

(A 3a) 

(A lib) 

(A 3c) 
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Kquaiions (A 2&) and (A2ii) are the usual equations of motion      a damped, 

Uvo-leve] systrm: (A 2c-) is the equation of motion of a third,   decoupled level. 

Equations (A3) describe coupling effects to lowest order in or. 

From (26) and (AIT,),  the boundary conditions are found to be 

dJ
a<t0;tCJk)= d.(t0:t0.k) 

(A4) 
d^ (t0; t0. k) = 0 

Thus,   for an atom produced in either level 0 or level 2,   inspection of 

(A2) and (A3) reveals: 

d^ (t;t0, k) =0       .        k = 0, 2 
(A 5) 

d'(t:t0,k) =0       ,        k = 0. 2    ,     j = 0,2 ; 

Kq.(28)  of the text follows immediately fr^m (A 3c). 

For an atom produced in level 1,   inspection of (A 2) reveals: 

d^t;^, 1) -- d.(t0;t0, 1)        . (A6) 

Equations (A 3a) and (A 3b) may be comblm d to yield: 

'VivV ^!2do= (^-^^^(W1)0   ' (A7) 

which may be solved    subject to (A 4).    Then,  noting (A 1) and (A 6),   one 

obtains d0 (t: t0, 1),  complete to 0 (o): 

i6,t 

dQ(t;t0>l)^d)i(t°;V1)(62-^)e     |se   1   ^^(e    +   - ) 
^(^-63)^  Ißi2 1 S!61(62" 61)  +   l312   I 2      1 (AB) 

iq+T iq.T A 
+ (q_c - q+e ) \ 



The symbols employed above    have been defined in Table I.     Equation 

(A 8) may be rearranged to yield; 
in T iif,+T 

d0<t;to.l)=|d1(to;to.Ue        J -—^. |-.(A9) 

Inserting (A 0) into {A 3b) and integrating,   and noting (Al) and (A 6),  one 

obtains: 

rt    :;■ 1(6, - 0o)t   f +        , '- . -. 

d2(t; t0. 1) = 'i^ dj (t0: t0. 1) "      1     -     "I 1-~1 - --IT11 [  • (A 1 0) 

Finally., utilizing Eqs.  (15). (16), (26),(29) andfiO). the symmetry between the 

probability amplitudes may be d'splayed; 

^^(^t,,.!)      e'i<ni 

"    CQ^O^O'
0

)       i(Öi- wi>to 

* c, (t0; t     1) 1      1 
V-VU=f.-l-0---1^-inT-— ^(.^„.C)      . (Alia) 

e 

A   ,   i\     i(^L-w91yt 
c9(t;t0.l)^_£ J  £ ,  ^(1:^.2) .     (Allb) 

aß     c2(tf   t0.2) e-i(n2i-w2l)to 

Notice that from these probability amplitudes on obtains 

|c0(t;to,l)f2      IcjO;^^))2        , 
(A12) 

/c2(t;t0, l))2 -   Ic^t;^^)!2 

as anticipated in Eq.  (20). 
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APPENDIX  B.    CONNECTION WITH INDUCED POl.AHIZATION 

In this Appendix the relationship between induced polarization 

(41) and transition rates is examined. As a convenient starting point,   wo 

reformulate the damped equations ol motion. Eq. (i l),in terms of the 

density matrix p(t;t  , k),   with elements 

p..(t;to,k)-  e.(t;to.k)o* (t;io,k) . (Bl) 

In keeping with previous notation,    p.. (t; t ,  k) denotes the value 

of p.. at time t for an atom produced in level k at a prior time t      and the 

e.'s are the probability amplitudes inroduced in Eq. \L.i.    The familiar equa- 

tion of motion for p(t;t ,k) follows directly from (Bl). (7) and (11): 

p - -i    {r.p)   -i   lll,pl . {B2) 

Here { ]  are commutator brackets,   { | are anti-commutator brackets, 

WM      ' (B3) 

and li is the total Hamiltonian [Eq.  (3)] . having matrix elements 

H..= fiW. 6.+V.. . (H4) 
1.1 .!    1.1        LI 

with \ .   defined by {10).    The expectation value- of an operator,   such as the 

induced dipole moment, ß,   is 

p=tr{Mp) . (B5) 

In cases such as the present one,  in which the applied fields couple 

resonantly to different transitions,  the equations of motion,   (B2),  maybe 



;,') 

cast in another form.    Inspection oT the equations for the off-diagonal 

elements p  _ and p.)(. reveals that in the present case the solutions of 

Interest are of the form 

pm0(t:lo'k^   Am(t..t0,k)e      m  ,        „1=1. 2 
inlt 

(B6) 

where the Am are slowly-varying decaying functions of t - t0.    Furthermore, 

inspection of the equa.ions for the diagonal elements shows that the; p.. are- 

likewise^       slowly-varying decaying functions of t - t0.    [Sec the discussion 

of Appendix C,  Section 2.   These assertions may also bo verified directly 

by forming the p., {t;t0, k> from Eqs. (27),(29M30) and(iUl). ]   Then,  from 

{R5),  the dipole moment induced at frequen :y SI '   is 

Pm<t'to'k)= M0mPm0(t.to.k)4-c.c. . (B7) 

and 

Reeaus-e of the slow variations of the A    ,  the seeond term on the right hand 

side of Eq. (H8) may be conveniently neglected. using this fact,  the 

diagonal elements of (B2) may be written in the suggestive fon •m; 

P! ! (t - t0, k) +ylPn(i- t0, k) = -^ pj (t; t0. k) E' (/., t). (H Oa) 

p22 (t - t0, k) + 72 p22 (t - t0, k) = --~p2 (t; t0. k) E* (z, t)  . (B 9b) 
f,^ 

P00 (t - t0, k) + ro p00 (t -10. k) ^ -L_ p1 (t; t0, k) E' {7., t) 
tiO'j 

•,■^7TP2a:tO'k>E, ^t) 

(3 9c) 

hf^ 
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11 is convenient at (his point to introduct1 sevrral definitions and 

LdontitioH.   Tho initial conditions tor diagonal and oJ'f-diagonal elements 

of,) follow IVom  \'\\H.  (ID) and (7) and mav be written; 

Pj^to-to-k) = 6
ikökj . (BIO) 

Next,   note that 

J^P^t-to.^dto.  .j_i_,..(t.lo(k)fJto 

(BID 

by vii tue of the boundary conditions.    Furthermore,  as in Eq. (22) we in- 

k i troducc P^ (t), the ensemble-averaged polarization at ß     for atoms pro- m or m r 

duccd in level k: 

Pm(t)=  nkrk]   Pm(t:tO'k)dto • CB12) 
-  X 

Taking the time derivative    of (1312) and noting that (Bll) implies P^to:^, k)= 0, 

one obtains; 

J< '< Pm{i)-\yk] Pm(i;t0.k)dt0 (B13) 

Let us inspect Eq. (B9s) as it applies to atoms produced in level 

2( k = 2). ' .dplying both sides of (B9a) by n^y^dt and integrating from 

- ■■*> to t using (Bll) and (B13),  one obtains 

n2 Y2 yj  (   Pj j (t - t0, 2) d t0- - I*^ (t) E' (/. t)/h tfj 

(B14) 
s --    t- <Pl (t)Ej (K, t)>t+ (rapidly varying terms). 

In this equation the notation^     >   has been introduced to denote the time average. 
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(^n th«> right hand side of (HI i) we rotuin only tho IXC.   term -- the- remaining 

trrms arc- not significant and we v ave syKtomaticaUj' ignorrtl contributions 

of tin.s or-ier. R  culling 'In- expression for tlu> k-*j transition täte in- 

t\ iduced ir Eq, (18). 

J^-TkYj^  Pj/t:t0.k)dt0 . (B15) 

(B14) yields 

ruJ     •- - _L- <p2(tjF' {z,X)>.     . (B16) 
-  21      ha\       1       1 ' 

The quantity appeiring on the l»>ft hand side of (I{16) was formerly  »btained 

by coi.sidoring tht- probability of finding an atom produced in level 2 at t0 in 

level 1 at a later time t,  due to transitions induced by the applied fields.    The 

right hand side of (B16) is the rate a^. which energy is emitted at frequency ft^ in 

units of MV.  for atoms produced in level 2.    Accordu.^ly,  .J91 represents 

the rate of photon emission at fi'   ner atom produced in level 2. 

Next, consider Eq.  'B9c) for k = 2.    A procedure similar to 

the above results in tNo expression 

I 2 

Combining (1514) and (B17). one obtains: 

i . o 

2 

The quantity appearing on the left hand r-de of (B18) was formerly 

obtained by considering the probability of finding an atome produced in 

level 2 at t   in either of the other levels at a subsequent time, due to 

induced transitions.    The right hand side of (Bi3)  is the   rate 

(B18) 
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at which energy is emitted at U9 in units of hU^ for atoms produced in 

level 2.    Accordingly. J     + J.>n represents the net rate of phc.on emis- 
I 

sion at ft, per atom produced in level 2.    Xoting that J.?] is associated 

with emission of photons at .2, [see Eq.  (Bi6)] and also contributes to 

photon emission at Q0 , this emission rate evidently involves exchanges 

of two quanta with the applied fields.    This identification   leaves .J9Q as 

the contribution arising from single quantum exchanges with £„. 

Equations (Bib) and (R1S) were derived for atoms produced in 

level 2.    Similar manipulations may be readily extended to the other 

possible initial conditions.    One thfn obtains the general relations: 

V Jki = yk mm 
X 

(Note that Eos.  (B19) have been derived under conditions where both 

fields may fuliy saturate their respective transitions.)   Combining 

these equations tor m ^ 1   and using (2 3), one finds that the net power 

emitted at Q     is 

which is identical to Eqs.  (19) of the text. 



- 6 3 - 

APPENDIX  C:     CWl.Cl LATION OF POLAHIZATIOIS USING KNSKMBLE- 

AVERAGED DENSITY MATRIX KORMALLSM 

This Appendix rr?dorives   th«   results of Section II A of thr- text by 

means of the ensemble-averaged density matrix formalism and extends thosn 

results to the other coupling configurations.    Section C 1 establishes the 

connection between the time-dependent wave functions and the ensemble- 

averaged density matrix equations of motion.    In Section C2 these equations 

are solved for the "inverted-V" configuration,   Fig.2(a),and the ensemble- 

averaged polarization obtained, the same level system was treated in the 

text by means of the transition rate approach where an equivalent result 

was, of course, obtained.    In Section C 3 the method of Section C2 is ex- 

tended to the other level configurations. 

I.    Equations of Motion 

The elements of the ensemble-averaged density matrix corresponding 

to Eq.(Bl) of  Appendix B are defined by 
t 

Pyfr.t^Sn,^   \ Pij(t5tolk)dt0      . (CD 

(Note that as we have defined them here., the elements of    <, {t;t„. k) 

are dimensionless        while the elements of  p (T.t) have the di 

sion of number of atoms. )   Using the relationship 

o' 

men- 

t 
d 

Tt .Wij^vio-v py« ;* .k)+ Jp^t^k)*^  ,   (c2, 

and the fact that in the moving frame H. the total Hamiltonian. is independent 

of to. (32) leads to the familiar differential equation:(44> 

Mr,t)-1   {(p0-p).r}.i|H,pl       . (c3) 
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Note that in (r2) the appropriate boundary conditions,  from (12), are 

VVVk> = öik6kj    • (C4) 

so that in eq. (C3), 

P(Jj<r.t)= ni6i.       . (C5) 

with n. the steady-state background population of level j.    Using er .,:>) and 

(Cl).  the ensemble-averaged polarization is 

tr [np(7*.t)l . (C6) 

2.    Ensemble-Averaged PolarizaUon: ''lnverted-V" Configuration 

We precede to calculate the ensemble-averaged response of a 

particular velocity band of atoms whose level structure is in the form of 

an "inverted-V" configuration,  as shown in Fig.2(a).   From Eq.(C6),  the 

polarization induced by F* (z, t) in the moving frame is 

K* I 
2Re(Ai01p10)- He 'v (v-c) 2A1(z)e | (C7) 

which defines x (v. c), the complex susceptibility for the atoms moving 

with axial velocity component v. 

In the steady state the p.. = 0 except for population fluctuations which 

are entirely negligible when the M^'i»     <|iE,>.    under these conditions   the 

density rratrix equations may be compactly rewritten in the following form: 

0   ^ iE* T  ,    "ü2J20 ^ , 1 1 v i     ^ ^    i 

r20'r20    "T"  M 7~^     'T"    ^:'M02^20,     C-C- (C8a, 

Yo(^OO_nO)+Tl(0ll" nl)+T2 (p22- ^^ 0 

=±^^ „ 
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E1 

to\ßOl -   --(^01rl0^02^21)      ' 

^20^2C=+f ^20r20 + ^10^21)       ' (C8b) 

E* 
X21P21 =   -ir<M20p0l"M01p20)       * 

In the latter equations E1 = El + El is the net impressed field as seen in the atom's rest 

frame; we have also introduced the operator 
/.,.   iJi-m.-WJ+iY-,       . (CO) 
••y dt l       1 l3 

and have written r^ = p^- (,    an<l ri.-- n^ - n.. 

This set of equations may be solved by inserting E   in complex form. 

The various Fourier components of E* drive the off-diagonal elements p... 

Of special importance are the coefficients of thr p.. on the left-hand side of 

Eqs. (C 8b).    These are associated with the resonant behavior of the induced 

polarization.    The only important frequency components of the p.. arc those 

which can reduce the magnitudes of their coefficients to the y.. for particular 

values of i2' and u]      In other words,   a nearly exact solution of Eq. 'C8) 

ran be obtained by assuming the following form for the off-diagonal density 

matrix components: 

"Öl = Ae 

- iftj t 

-KI n* t 
P20 = Xe 2 ■ H'lO) 

p^. - De 
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in which X.  A,  and D are constants.    Inserting (CIO) into   Eqs. (c 8).  one 

obtains a set of five simultaneous linear equations: 

0 i(rio-rro> = 

+
 i(r20-r20> 

'J   X   M^-+-i)aA 
?0 

o 

■'0     Yi 
c. c. 

A + (-*- +J-)ßX 
Y0 Vn    72 

- c. c. 

■Ll A =or10 + i3 D      ' 

UX  = ß* ron+ffD 20 

R*D = A - /3* A 

(Clla) 

(Cllb) 

(Clio) 

(Clld) 

(Clle) 

The symbols employed her«; have all been defined in Section II A. 

A solution to this s<-t of rquaiions for all values of El and for weak 

K. (i, e.jü';^< Y) can be obtained by means of a simple perturbation technique. 

In the absence of coupling through t/ the system reduces to a simple two-level 

system,  and the off-diagonal matrix elements p0- and p-    vanish.    Setting 

t> = 0,  (C 11) yields the unperturbed solutions: 

xu = Li£ 
O     :>* , * >r u 

A 

u 
10 

u 
20 

r?o . 2 
720 
Y0 

^0 L2i
2 

2 ro r2n ((n2) 
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In (C12) the superscript u ha* been introduced to designate the parameters 

of the uncoupled system.    The presence of coupling through Ej does not 

affect the unperturbed parameters X11.  r^and r"0 to lowest order in a.  Thus 

the first order coefficients A* and D* are determined by the first and 

third off-diagonal equations,   (C lie) and (C lie): 

Ll    ^ -A^ + ßD* 
(C 1 3) 

Equations (C 1 3), together with (C12).   (CIO) and fC7) yield the complex en- 

semble-averaged susceptibility comolete to first order in u: 

^'*>*^--{üi~no>-j^ + <*r^~w —JIT—-   (C14) 

The time-averaged power emitted Ufl- is 

< 
I^Q'j) = £L i2All

2 Imx  (v.f)       ; (C15) 

the present result is thus in full agreement with Kn. (39) of Section [IA. 

3.    Extension to Other Level Configurations 

The developments of the previous section may be adapted to the other level 

configurations in a simple and straightforward manner. The configurations 

of interest are illustrated in Fig. 2. In terms of the relative position of the common 

level, level 0, they are:the"V" configuration, level 0 lowest [Fig. 2(b)] ;the cascade 

configuration, level 0 between levels land 2 [Fig 2(c)] andthe "inverted-V"corflguration, 



ßfi 

level0 highest tHR.2(a)],   The equations of motion, (CP.), differ in the various cases 

only in the relative signs of \\ . - W.    which enter into the cC ...    Eq.   (C 9). 

These sign changes lead to different choices for the resonant contributions 

to the off-diagonal density matrix elements,   (CIO),   which,   in turn,  neces- 

sitate other changes.    The modifications of Section C2 necessary for its 

extension to the other level configurations are summarized in Table fl. 

Inspection of the final results (noting Ine definitions of A.  in Table II) re- 

veals that the susceptibility for the cascade and "inverted-VM configurations 

art the same,   except that in the lutter rase A), is replaced by -A9 where- 

ever it appears.    Furthermore,  the susceptibility for the "V" configuration 

is the negative of that for the "inverted-V" configuration,  a result expected 

intuitively. 
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TAilf-K II.   r^xton.sion toOUur [.fvl Configurations 

equation 

(36a), {36b) 

(36c) 

(37) 

(35a) 

(35b) 

extended definition 

R (y1.,v2)^ (v^ + Vr,)- iy91 

i     i 
N   . = fi . - W , 
"  J J J 0 

ACv0)= |L„(y0)l2 + 4-^ !/3:2 
'2V2 

B(y1.y2)= -R(y1(y2)Lj(v1)+ \ß 
,,2 

lu     I2' o/ x o L2(>'2)-2-%?R<>'i'y9>l 
X ^l'^ = -^^ ^ni-no)«^!^)^^^^-^-2 ^ LA} 

1    2 ^ ^(yj.yg)    2    ^ A^y^B^.yg) 

(C14) 

equation quantity Level Configural ion 

"V" [Fig. 2 (b)l "Inverted-V" I Fig. 2(a)] cascade [Fig. 2(c)) 

ifijt -m'jt -inlt 
Ae o01 Ae Ae 

(CIO) 020 \ e 
in;t 

Xe     2 \e        2 

^21 
- i (f.4- 

Dc 
■li'^t 

De       ^      1 
-i(n; + n;)t 

I) 0             '         "* 

>! 
-A 

i ^'l ^\ 

■v2 
.^ ^2 **2 

(25) 
o M10A^ ^oAi'/fl MjoAj/t. 

J ^ 02 A2  " " 02    2 ' "02 A2./'■ 

x(v.O M10A  A, M01A  /A, M01A*/A1 

i-}) x(y1,y2) x (-A',, A!,) r-2' XCA'J.-A^) 

- X*(A]. - A2) 

X(A,
1> A^) 
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APPENDIX D:   VELOCITY INTEGRATION IN THE DOPPLER LIMIT 

This Appendix presents in detail the velocity integration procedure 

outlined in Section ÜB.    As seen in the text, Eq.(41))   the expression for 

the Doppler-shifted response of a particular velocity band of atoms viewed 

in the laboratory frame,  is a rather complicated function of velocity.    More- 

over,  the convolution of such an expression with an atomic velocity distri- 

bution G.(v),  Eq. (47),   depends,  in general,  on the specific form of the 

latter cistribution.    In the fully Doppler-broadened limit 7/kU'" 1, however, 

it is possible to perform the averages without recourse to the details of 

the C s.    Furthermore,  a number of cancellations oc«. ar in this limit, 

resulting in a rather simple final expression for the velocity-averaged 

response. 

1.    Velocity Integration 

As shown in Section 3 of Appendix C, the expressions for the ensemble- 

averaged response for the various level configurations of interest are 

closely related to one another.    It is worthwhile to perform the velocity 

averages in a general form, applicable to all of these.    Referring to 

Table II,  the susceptibilities for the "V" and "inverted-V" level configu- 

rations.  Figs.  2(b) and 2(a),  respectively, differ only in an overall 

sign; accordingly, the corresponding velocity averages may be performed 

identically.    Furthermore, the latter expression may be readily extended 

to the cascade configuration,  Fig.   2(c):   following Eq. {4b),   the expression 

for the Doppler-broadened power spectrum may be written: 
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1^(12,;«)      ^U,! u r Im ^ ^(v.Odv; (HI) 

the subscript a has been added to denote the "invcrted-V" level configu- 

ration (cr = +1), treated in the text, and the cascade configuration^ =  -1). 

As in Eq. (40), 

R(CT)      , x,n.2     4(or>-2-7— Ria) 

with 

and 

t)CT(v;€)- {n.-nn)  ~^ + (n-n)l,ß|    —2 Z .    (D2) 
1     U        R ^     U AB 

2 
2       ^20" 2 

A --  !L2(ff I     + ~ I 3 ! (D3) 
2 ^2 

B = -R{J)L1
!:!+ I3| 2   . (D4) 

From Table II, the appropriate generalization of Eqs. (36) is 

Ll -- Aj + i710  , (D5a) 

L2ftr)=-orA; + i720   . (DSb) 

R(a) = (A', -a*],) - iy2l. (Dbc) 

Yo perform the averages,^ (v, f) is decomposed into its partial 

fractions.   In addition to n.=N.G.(7)lsee Eq.  (47)j, ^^is velocity depen- 
J .1       J 

dent throagh L.. L«, and R,  Eqs.  (D5).    Explicitly, 

a=+r.   "inverted-V"   (see text) 

a- -I',   cascade 

e = +1 : Ejll E2 

t = - 1 :  Ej anti - | I  E2 
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L2     12 + a« k2v , 

R    ^  rt-Kv ; 

(D6a) 

(D6b) 

(D6c) 

K ^   k,  -  Of«k2 (D7) 

1^ A1   t  i710 

12 - -^ 2 + iT20 

/l- (A1  - oA2) - i721 

(Ü8a) 

{D8b) 

(D8c) 

with A . = S2    - CJ..   To expedite the decomposition,  note that 
]        J       3 

i  i r   i i     i 

in which 

anti 

R     g L kj v + b_       kj v- b+ 

e = | (Ji 1*   -/i)2   t   1 Ji   |/J 

^^i^h-^1*^^ 

2    i 
i 

1/2 

1 

Also, J- = 1 

where 

A        Sy^-Q       in  + ae k.. 

m
+

=12" ^20^-^   ' 

m.+ of. k(,v 

(D9) 

(D10) 

(Dll) 

(ni2) 

(DB) 

and Qis the factor by which the saturated levels uf the 0-2 transition are broadened: 

■ 



4 t   >     ä       :  ''' - 
Q       i + _JL_J^  ; . (DU) 

L ^O1'! -J 

Inserting Eqs.  (D9) and {DID into u^-), the partial fraction decomposition 

leads to expressio'is of the form of Eq. (48) of the text: 

+ r r 1 r i 1 ^ ~ ^ 
H-(v) - G.{v) v     C« -i- IY) + kv    i («'   + iy ) 1 k   v H-      .    (D15) 

J J       ^ . J L J i 
i i i 

in whichu . w ,7 and 7    are real and y and y   ■ 0.    As stated in Eqs.  (49) 

of the text, in the limit y/ku<    1, 

SI 

a 
- x> 

-{2ffi/k) O^-j-) 
H.     (v)dv - L_2 , (Dlba) 

J k        1 ' {u + w) + r, (w    J- iv ) 

and 

\   H4" {v)dv - 0 (Dlbb) 

A proof of Eqs. (Dlb) will be found at the close of this Appendix.    Thus, 

in the velocity-broadened limit, the question of whether or not a particular 

partial-fraction term of the type (D1S) contributes to (Dl) is entirely 

determined by the Signs of the imaginary portions of its corresponding 

factors.    Many of these are,  in turn, controlled by the sign of K I Eq. (D7)| 

We shaH confine our attention to the important case in which K 2:0, ahva>s 

valid if either k. 2:k.. orac - - 1.   The complementary case in which K   ' 0 

can be obtained similarly. 

It follows from their definitions that when K ^ 0,   Im ^+b
+.) >  0. 

Using these facts, the velocity-averaged partial fraction components of I 

may be combined to vield: 

k 2 1 
1^(0^0= 2fftic iai2 1 w0l (Aj/kjHZ—LJiLL-   w02( A2/k2) ImFfac) j .     {D17) 

k2      T0Q 



in which 

F{ot)si l^+«üm   - ilfid-HnQ)}! ~ i- l-  

k2    ac      - k2    ac    +   (D18) 

w j j w) - Nj Gj (v) - N,G) (v)       , (D19) 

and 
Äj= n j' uj • (D20) 

Also,   in evaluating the G^s in(D17)thc approximation that \ßl   /y0,« ku 

has been made. 

The first term of{Di7)\vill be recognised as the power emitted by 

an unsaturated Dopplcr-broadened two 'evel system.    The second term may 

oe simplified by utilizing the identity{D9ywith-« (k,   k.,)m    substituted for 

k.v.    Then usin.g(D4) and (D6), (D18)reduces to: 

*• M ^.  J F(OE) 
: —^ — ^ i~ , (D21) 
(/!+ot-JS-m )(L ^-otJ. m^)  -   m " 

which may be further simplified by noting that,   inserting (DM) the numerator 

is a factor of the denomenator.   Replacing k,   k, by u, '«,,   slight re- 

Io(Q1:0 = 2rf4c!ar|w0l(A1/kl) 

"3, J l2 

1     -2    " J     l 2 J 

a remarkably simple result'     Forcr= -s-l this expression, of course. 

k (D22) 
J 

- 



reduces to Eq.  (50)   of Section IIB. 

132.    Proof of Equations (Dlb) 

Consider the integral 
f       kG(v)dv 

Z.(«. ku,Y)   =  \ ]    . (D2i) %.- (w + ly) + kv 

(«+ iy + kv)'1 ~>P(^ + kv)'1  - i ~ ö|-^- +• v). (D24) 

in which« and y are real, y> C, and G-(v) is a slowly-varying, even function 

of v, of width characterized by u.    In the limit 7/ku   « 1, 

where P denotes principle value, and (D23) becomes 

Z>. ku)   = P\ J  IT    G-(-g-) ; y/ku   « 1. {D25) 
J J       U j. v J      K 

-00      U 

For compactness, we shall v.rite 

Z-(«. ku) = Z'.(~.ku) - iz"(u. ku) {D26) 

with Z   and Z. the real and iraaginary parts of (1)25),  respectively. 
■i- 4. 

Consider now the function H.'(v),  Eq.  (D16):   Decomposing H-(v) into 

partial fractions and then using (D2 3), (D25), and (F326), one finds that in the 

Doppler limit, .  r 
« i iZ (u'k'u) - Z.(», ku) j 

\ H- (v)dv , y/k u  « 1.       {D27) 

k k 

The only significant contribution to (D27) arises from the immediate vicinity of 

u - (k/k )w    « 0.    Under tlie stated assumptions the Z. vary slowly over this 
(45) 

small region: consequently, it is permissible to evaluate the numerator       at 
t n 

u = - (k/k* )«' .    Making use of the fact that Z    and Z   are odd and even 

functions ofu, respectively, this substitution leads directly to Eqs. (U16). 
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+ (Y1 3/73) (N3-Ni>^13- i(w31 -"B*1"11 

+ (!.l2M31i
2^T1)(N3^2-2Nl>El3lY"i(üB-l)rl 

+ (iMl2M3/^V^V^^-^B-B«"1 
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+ (liU12M31!
2/Y1)(N3-N1)E1E2

2[27-i(W32-A)]"1 

i1 + Yl[r32■i(u32■A),'1, )       ' 

P;=-[i3r1/2/{4ku)]!M12M;ni2(N2-N1)K1K^lYJ2-i(cJ2rI/1)r
1 

1 - -        • {33^ 

^32" i(w32-A)' 
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FIGUHH  CAPTIONS 

Fig.   1.    Spectrum of lino narrowing induced in the Doppler t;ain (or atten- 

uation) profiles of (a) laser and (b) coupled transitions.    In the energy 

level configuration depicted the effect takes the fornn of depletions in gain 

of the coupled transition over two narrow frequency intervals.    As an 

example,  for a weakly saturating laser field and for closely spaced lower 

levels of equal lifetimes,  the broad change signal (width: rR) of the coupled 

transition is twice as wide as the laser change signals (width:r, ), while 

the narrow change signal (width: nT) is reduced by twice the width of the 

upper level (level 0) and is independent of it.    In tht cascade configuration 

(not shown),   level 2 above level 0,  change signals of similar widths 

selectively enhance the background profile of the coupled transition.    Also, 

in the latter case the positions of the two change signals are interchanged. 

Fig. 2.    Energy level configurations.    Frequencies il.  and Si« refer to the 

applied fields and w    and w- to the level separations.    In each case level 

0 is common to both 1-0 and 2-0 transitions. 

Fig. 3.    Spontaneous line narrowing effect: simplified experimental arrange- 

ment,  energy level diagram,   and spontaneous emission line shape as in- 

fluenced by laser field.    In the latter diagram the laser is assumed to be 

oscillating somewhat below its atomic center frequency (w- n„> 79n
+—7, )• 

See text for details. 



Fig.  4.    Mode crossing effect,  simplified experimental arrangement and 

energy level diagram. 

Fig.  5.    Frequency stability of modo crossing resonance.    The frequency 

separation of the applied fields, Q^.,  remains stable against frequency 

drift caused by length changes of the laser resonator.    Thus the resonant 

condition figi= "öl  is maintained,  regardless of drift of the laser fre- 

quencies.    Note that in an actual experiment the Doppler prifiles may overlap. 

Fig. 6.    Mode crossing change signal observed in Xv at 3  37JU.    The sample 

cell is external to the laser resonator (Fig. 4). 

Fig. 7.    Frequency instability of the additional standing-wave resonance which 

occurs when the sample cell is placed within the laser resonator.  The condition 

for the latter resonance,  ^-+12= w +«_,   is destroyed by slight fluctuations 

in resonator length.    (Compare Fig. 5.) 
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A PhotoelGc.nc Potential from Photoreceptor 

Cells in Ventral Eye of Limulus 

J. E.   Brown,  J. R.   Murray, and T. G.  Smith 

ABSTRACT 

Intense colored light from a CW gas laser evokes a photoelectric 

potential (PEP) in the photoreceptor cells of the ventra1 -ye of Limulus. 

This PEP has two components, both of which have the action spectrum of 

a 530 nm rhodopsin.    The evidence is consistent with the hypothesis that 

the PEP arises directly from the orderly array of rhodopsin molecule, 

which are an integral part of the photoreceptor cell membrane. 

es 
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In n previous paper wc rcptJrtcd that who« the lateral eye 

\.imulus polyphoi.ius is stlnulatcu v.ili; very intense lirhis, 

a short-latency response can bo retiorde'i \.Jlh intracellular 

electi'odos froin th;.- eye's photoreccptt«- eellr. (the retinular 

cells) (1).  This electric;! i*cspon;:e, t'liich wc eil led a photo- 

electric potential ({;i* PEl'), v:i-- founci to hrtve a nuubcr oL churac- 

teristts similar to the so-called truly receptor potential (EPJ') 

studied in vertebrate eye    rith extract ] lu I ;-r electrodes (2-15). 

In additloa, the observations th..l the polarity o7  the PEP re- 

versed acrcKS iho photorcc:; : or coll L;es"«-rrnc and tli  artplitude 

and the polarity of the RiP could b^ alttxed by chr.nginc membrane 

potential Indicated that the generator or the Pi:P «ras intimately 

associated vith the photoreceptor cell isesabrane (1).  llov.ever, 

there reaainod the questions oX vhothcr the bTnulus PEP, like 

the T 'P, had two cosjpoaents, and il tiic spectral sensitivity of 

these coiiponentf» resesabled the absorption spectrum of Liaulus 

rhodopsir.  In this paper '..c present evidence which answers thesu 

quest ions af f irmat ive1y. 

The present cxpsrifr.eats were done on the ventral eye of 

Limulus.  The photoreceptor cells of the ventral eye have tany 

anato'ical properties, eicabrp.ne characteristics and responses to 

li^ht which arc essentially the saxio as those found in the retin- 

ular cell ol the lateral eye (17,10).  The wethods used in ther." 

expsrinonts were the sane as erployeü previously (1), vith two 

additions. Kcrcj the action spectra of the PEP wire determined 

by U3iii[; a CW pas laser (argon or krypcor.) cor structed and 



dovylopr-d by oao of us (J.R-M., 16).  With this laser, fivv. line 

of sufficiciitly inlou^c uouochroinatic light witliin the Kpectral 

region Oi intcrcnt vtrc Jtvuiluhlo.  The action spcclru:.: of the 

t>',.i_'r;. tor potent i:.l \ a:j d&toniinctl by u?.iji[i Cft" Xenon a''e source, 

narroiv-baml interior-.-ace filters and neutial density fiitoi*;-:. 

Kfacn a pal.'e oC white litcht of ßoderate intensity (ir the, 

range of miero.?; ■ ;,) is focused onto a ventral eye photoreceptor 

cell, the nerabrans potential unciöl'goes a transient depolariza- 

tion vith th^ characteristic v.averorn of the generator potential 

(Fig.l.A, Vj) and with a latency of several milliseconds (Fig-IA, 

cf.Yt. and L) -  When, horcv r, the light intensity is increased 

several hundred-fold, another response appears whoso onset is 

coincident vith the licht pulse (Fig.IB, cf.Vg and L).  This 

response is the PEP. 

Fron Fig- l.D.Vg, it can be seen that the PEP has two 

coLinononts.  The first is a depolarizing potential change which 

is coincident with the ligsit pulse.  The second component is a 

hyporpolarizing potential change which outlasts the light pulse. 

Monochror.atic light froa the laser produced the saivio PEP's 

as those evohod by white light.  The action spectra of both 

co nioacnts of the PEP fit reasonably veil with the absorption 

spoctre.i of a rhodopsin (predicted by Drat nail's noaiogram) with 

the absorption nax ra-i taken at 530 nu (^; Fig. 2). Previous 

studies have SIIOVQ by micro: pcctrophotoa'.'try (18) and v.ith 

electrophyr.tological techniques (19) that ..he absorption spectruta 

and generator potential action spectre ., respectively, peak near 

53C n i. Wc confirn that the ventral rye generator potential action 

spectnua peaks i ar 530 rn (Fie- 2) 



In conclusion, wc have IOI-KI that a PiiP can be recorded 

with ialrucellular electrodes in the photorcceptor cells oi the 

Lino If-: ventral eye.  This Vl.V  is siiailnr, in t v) more respects, 

to the KHP recorded CKtracelluli'rly tro:i vertebrate e/v:-, vi>-. , 

there are two components to the response and boll» cu.n«ioneats 

have action spectra vhich arc the saiuc as both the absorption spec 

trum of rhodopsin and the action spectrurj of the generator 

potential. 

We and othcrr. (2-15) tulerpret the pi'escntly available evi- 

dence to indicate that the P^i* and KuP represent an early and 

perhaps direct electronic chanrjo in rhodopsin Eolccules.  Recent 

evidence suggests that the generation oj the K1;P ir dependent on 

preservation of an ordred arr.y of rhodopsin Bolccules (15). 

Moreover, as will be reported Inter (17), the properties of the 

ventral eye PUP, like those of the lateral eye PEP (1), indicate 

that the PFP generator is an integral constituent of the photo- 

receptor membrane. Hence, the generators of the EHP and PEP may 

»ell be an ordered array of rhodopsin molecules lyin^ in the eell 

Ecnbraucs of photoreceptors. 

Whether the PKP and ERP are in the direct chain of events 

leading to the perucability chM^es associated with the generator 

potential and Elvi, respectively, and if so, how they are coupl« d 

to these permeability changes, reuain open questions. 
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FIGURE I.EGKNDS 

FiC- 1. 

tntrac&llular ro^ponsos of  Liraulus ventral eye to li£;ht.. 

In both A and B, V, Is low pain, D. C. -coupled, slo.v sv.cep- 

spcod recording; Vg is bigh gain, A. C. -coupled, xast sv.xcp- 

spced recording; mid L l.s light monitor synchroniüod with V,. 

at the saitio Ev?ccjp-apccd. In \' , I no initial pulse is a voltac^- 

tittG calibration ! rlx-,- of 1 nV and 'A  MSOC.  The gain of the 

V, trace is 20 times ley?*.; the sweep speed 5 times slower.  In 

A, the li^ht intensity was in the ran:? of j. watts.  In B, 

the light intensity was in the range of m watts. 

Fig. 2. 

Action spectra of toe PEP and generator potential.  The relative 

sensitivity (ordlnate) against wavelength in nanometers (urn; 

abscissa).  Solid line taken fro» Dartnail noraogram for 530 

ns-pigaent. Open circles show the action spectrum of 

generator potential.  Squares and triangles indicate the 

action spertra of the depolarizing and hyporpolariving cor.i- 

poncnts, respectively, of the PEP. 
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Motional Narrowing in Hydrogen Raman Scattering 

J. R. Murray and A. Javan 

This report describes the results of a high resolution study of the 

motional narrowing effect  (the decrease in the normal Doppler linewidth 

when the mean free path becomes comparable to the wavelength of the 

emitted radiation U  ~ 5)) ui spontaneous Raman scattering in the (^U line 

of the 1-0 vibrational band of the hydrogen molecule.   An argon ion laser 

is used as the exciting source, and the linewidth analysis is done with a 

Fabry-Perot interferometer. 

We have reported qualitative preliminary observations of this effect 

previously (6).    Motional narrowing was tics* seen in hydrogen by Rank and 

Wiggins in infrared absorption spectra (7).   Narrowing has also been seen 

in stimulated Raman scattering in hydrogen (8).    Cooper, May, et al. have 

obtained similar high resolution results for the rotational Raman lines of 

hydrogen.(9) 

The argon ion laser operates at 4880Ä and is a hollow cathode 

design with segmented graphite discharge tube (10).   The laser is   operated 

in a four mirror Michelson type cavity (11) to reduce the number of simul- 

taneously oscillating modes, and has a linewidth of about 0. 0085 cm" . 

(The linewidth under similar conditions in a two mirror cavity is about 

0. 1 cm    .)   The center of this line is locked to an external Fabry-Perot 

reference to reduce frequency drifts, which otherwise are a severe limit- 

ation.    The output power is about 50 milliwatts. 

The laser beam enters a scattering cell which is a quartz capillary 

of 0. 5 mm. inner diameter and 30 cm length.   Reflection at grazing 

incidence from the walls of this capillary propagates the light scattered in 
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a small cone in the forward (parallel to the laser beam) and backward (anti- 

parallel) directions to the ends of the cell, where it is collimated by a lens 
_ i 

and enters a pressure scahned Fabry-Perot interferometer of 0. 79 cm 

interorder spacing.    The output of the Fabry-Perot is detected by an ITT 

FW-130 photomultiplier with pulse counting electronics and displayed on 

a chart recorder.   Recordings are made at a temperature of 25 C. over a 

density range of 2 to 100 Amagat.   Sample recordings exhibiting the line 

narrowing effect are shown in Figure 1.   The dependence of the Q{I} line- 

width on density is shown in Figure 2.   Theiistramental linewidu  0. 031 cm    ) 

has been subtracted from each point. 

At high densities, ignoring pressure broadening effects, all models 

of the motional narrowing predict that the normal Gaussian Doppler profile 

D k^ will become a Lorentzian lineshape with full width at half maximum _2 , 
w d 

where D0 is the self-diffusion constant, k is the wave vector of the 

incident photon minus the wave vector of the emitted photon, and d is the density 

in Amagat units (density/density at 1 atm. pressure and 0oC).   If pressure 

broadening is present and is not correlated with the motional narrowing 

D k^ (2-5), the resulting lineshape will be a Lorentzian of. width    0      + ad, 

where a is the pressure broadening coefficient, and is determined from 

-3       ~1 the forward scattering data to be 1.68 ± .07 x 10     cm    /Amagat, which is 

in fair agreement with the calculations of Van Kranedonk (12) and the 

measurement at higher densities by May, et al. (13). 

The solid line for the backward scattering in Figure 2 gives a fit to 

this simple diffusion model.   The dotted line gives the behavior of a "hard 

collision" model (2,4) in the region where it diverges from the simple diffusion 

model.   This model assumed that the velocity of a molecule after a collision 
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has a Maxwell-Boltzmann distribution and is unrelated to its velocity before 

the collision.   The diffusion constant D0 has been chosen for a best fit to this 

model, and is 1. 35 ± . 10 cm   Amagat/sec.   A gas kinetic measurement of 

D   (Ht), expressed in our units, and corrected for temperature, gives 

D0 = 1. 361 ± . 004  cm   Amagat/sec.   Asa   measure of fit of the experimental 

data to these models, the mean deviation of the experimental points from the 
-3       -i 

simple diffusion model above 12 Amagat is (all in units of 10     cm    ) + 0. 9 

and the root mean square deviation is ±3.    For the hard collision model 

below 12 Amagat the mean deviation is +0. 07 and the rms deviation ± 7. 5. 

Noise in the points above 12 Amagat is primarily laser flicker.   Statistical 

noise is important below 12 Amagat. 

The dashed line gives the behavior of a Brownian motion or "soft 

collision" model {2, 4) for the same region and with the same value of D 

This model assumes a small velocity change in a single collision.   If 

D   is chosen 10% lower for a best fit to the Brownian motion model, the 

mean deviation below 12 Amagat is -5 and the rms deviation ±10,   Above 12 

Amagat the mean deviation is +3 and the rms deviation is ±4.   This is a 

noticeably worse fit than for the hard collision model, and indicates that 

the hard collision model is a better approximation for hydrogen. 

We are presently extending these measurements to other lines in 

hydrogen and deuterium. 

We would like to acknowledge very helpful discussions with Professor 

A.D.  May. 
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FIGURE CAPTIONS 

Fig.  1:   Sample chart recordings of the Q(l) R; man line of hydrogen,  show- 

ing the dependence of linewidth on pressure.   The small peak to the right is 

the Q(0) line in another order of the interferometer.   The scanning speed 

was 0.025 cm'  /min and the time constant 10 sec. 

Fig. 2:    Linewidth (full width at half maximum) of the Q(l) Raman line of 

hydrogen for forward and backward scattering.   The Doppler broadening 

is destroyed as the density increases,  and pressure broadening then be- 

comes dominant.   The instrumental linewidth has been subtracted.   The 

theoretical fits are explained in the text. 



FOOTNOTES 

I.   The line shape should be Lorentzien. and fits a Lorentzian to *ithin 

the error of the experiment, above 12  imagat in the backward direction 

and 2, 5 Amagat in the forward direction, so that the Lorentzian instrumental 

width may be simply subtracted.    Below   12 Amagat the lineshape should 

go smoothly from a Lorentzian to a Gaussian at zero density, but. our 

noise at the5e low densities is too severe to get a detailed line shape.    We 

have used a best Lorentzian fit to extract the linewidth. 
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Frequency Spectrum of Spontaneous and Stimulated Line Narrowing 

Effects induced by Laser Radiation 

M.S.   Feld and A.   Javan 

In an earlier publication,      a laser-induced line narrowingeifect v. as 

utilized in a precise determination of isotope shifts \n two N'e transitions.  A 

(2) recent paper     also reports observation of ibis effect and its application in 

studying some linew idth parameters in Nt.    These experiments study fluo- 

rescence arising from the lower level of a Doppler-broadened laser transition 

toatnird level. [See Fig.  1(a).j    Viewed along the laser axis, the broad 

fluorescence line shape is dramatically infiuenced by the laser field.    For a 

standing-wave field detuned from its atomic center frequency, the laser-induced 

change signals appear as resonant increases in intensity over two narrow inter- 

vals symmetrically located on opposite sides of the fluorescence center frequency. 

The fluorescence  from the upper laser level  {Fig. 1(c) j , similarly viewed, 

would exhibit narrow resonant decreases in its overall emission profile. 

The overall features of this effect may be described by noting that the stand- 

ing-wave laser field selectively interacts with atoms whose velocities 

Doppier-shift one of its travelling-wave components into resonance; this 

produces changes in the laser level populations--an increase in the lower 

level population and a decrease in the upper level population--over two 

narrow intervals symmetrically located   about the   center of the ■ rdocity 

distribution.     A recent letter      has analyzed the line-shape details 
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for the cascade case [Fig.  i{a^j in terms of two-quantum ti'ansitions 

from  level 2  to  level I,  and predicts  differing width.;   for ihr two 

laser-induced change   signals.    A  similar line shape asymmetry,  de- 

scribed below, would appear in the change signals from the upper laser level 

[Fig. 1(2)] .Note that in the latter case, however, the 0— 1 emission act is an 

inherently single-quantum event, requiring another description.   The sum- 

mary of a different treatment        based on the density matrix form  lism   has 

described the spontaneous emission   profile     in both cises.   Lincshapc be- 

havior of similar origins has been encountered in the microwave region in 

experiments involving the interaction of two monochromatic, classical fields 

with a three-level system,    ' " These considerations may be readilv extende-; 

to the present case by including the Dbopler effect, and noting that the spontaneous 

emission spectrum from either laser levelilevei Oof Figs. 1(a) and i(c)J follows 

ihe emission line shape   stimulated by a weak monchromatic field tuned through 

that resonance when the population of level 1 is ignored.   In fact, recent experi- 

ments have studied the response of a Doppler-broanenen three-level system coupl- 

ed to two classical fields.   The line-shape theory describing these experiments 

is directly applicable to important special cases of the effect observed in 

spontaneous emission.   This letter has three intimately related objectives;   Ti ■ 

first is to point out the direct relevence of the detailed analyses of Refs. 7 a:u! 

8 to this problem; these also predict that one of the laser-induced resonances 

will be narrower than the other.   Secondly, we emphasize that experiments 

based on stimulated versions of this effect demonstrate the different charac- 

teristics of the two laser-induced resonances. ThirtHy, this letter generalizes 

the theory in several ways, including importai    power-broadening effects. 

The analysis of Ref. 7   describes the third-order interaction of two mono- 

chromatic fields with the folded Doppler-broanened system of Fig. 1(b) in which 
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}*vis  1 and 2 art' assumed to be close-ly spaced.  Note that the analysis of a cascade 

system (Fig. 1 (a) ] in which the middle level lies about halfway between the other two 

levels follows identically.   For purposes of illustration, lot us assume that 

both transitions exhibit gain.   Consider a strong standing-wave laser field 

K2(iO detuned by an amount ^9 :    7..,-*-- TQ from W2'tlie Peiik 0^ ^^^-ODoppler re- 

sponse iFig. 1(b)] ;here, y.^-iy.^;.), with y.the natural decay rate of level j. 

As a weak monchromatic field E. (fi.) is tuned through the 1-0transition, it is shown 

that the broad Doppler gain profile is considerable modified by the presence of E„. 

(9) The resulting line shape is obtained from Eqs,  (33d) and (33e)       ofRef.  7: 

P(Ql) = an,) Ti +5Ef ^{tsp^U^ + yj*^-*')*^}}   ,n 

U
1*Q2' 

in which A   = U-v-, w = atomic center frequencv of i-0 transition,  and fl and 
J       J     .1     .1 ... . j 

E0are frequency and amplitude of E  (S2 ). respectively: G^.) is the linear 

Doppler response,   a slowly  varying function ofQ   ,  and ^  is a constant 

factor     ForQ9 above u„, (1) predicts narrow I.orentzian responses of 

widths rB =  J.+ 70*270 below »      and n. -7.+ 7., above t«      the latter be- 

ing narrower by 27_ and independent of 7_.   In subsequent discussion we 

shall refer to the "broad" (F ) and "narrow" (n) resonances,   respectively. 

The narrow resonance,   r»., predicted by (1) has been observed and 

fully verified      for I,. <    rR.   In these experiments levels 1 and 2 are 

tunable Zeeman components of an upper laser level connected to a common 

lower level.O.   The monochromatic fields are t-.so oscillating laser modes 

of fixed frequencies determined by the cavity length.   The    ifect is observed 

as sharp decreases in the laser output as the 2, 1  level splitting is magnet- 

ically tuned.   These methods,   however, have not been applied to the ob- 

servation of IV,, which requires absolute frequencv control as in Lamb-dip 
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experiments.    (See Rel'.   7.) 

We report here an extraordinarN manifestation of the broad resonance, 

observed in high-resolution studies of the 3p  I'     .,  1 - 3s S    atomic oxygen 

fine-structure laser oscillations at ^446 A     The relevant fine-structure 

components of this system consist of two resolved and closely spaced 

Doppler-broadened transitions farming folded three-level systems of the 

type shown in Fig. 1(b).   For reasons unrelated to the present discussion, 

(i)     the central portion of each of the fine-structure gain profiles is entirely 

depleted and appreciable gain exists only on the wings: and (ii) laser action 

most readily occurs on the high-frequency side of the strongest (2-0) fine- 

structure component.    For each laser mode oscillating on the 2-0 transition, 

two Lorentzian holes of enormously different widths selectively deplete the 

1-0 Doppler gain profile; the low-frequency hole, of width 2YQ+7,+7^,-130 MHz, is 

about 15 times broader than the high-frequency hole, of width y, +72- 9 MHz.       ' 

Because of multimoding on the 2-0 transition,  multiple hole pairs are burnt 

into the 1-0 transition.    The broad low-frequency holes overlap, completely 

suppressing laser action below the 1-0 line center,  and oscillation can occur 

between the narrow,  nonoveriapping holes above the center frequency.    The 

8446 A spontaneous emission and laser output have been studied photographic- 

ally with a high-resolution Fabry-Perot interferometer with free spectral 

range of 0. 8 cm      under a wide range of conditions     The laser oscillations 

were obtained in argon-oxygen and neon-oxygen mixtures, using a 3- 

meter cavity with 50   MHz mode spacing.    The   operating  prr-ssure was kept 

below 1 torr to minimize pressure broadening effects.    To establish the 

frequency shifts,  Fabry-Perot images of the laser oscillations and the 

spontaneous emission were superimposed upon the same glass plate emul- 

sion.    In absence of laser oscillation,  the spontaneous-emission«analysis 

shows,  in order of Äncreasing frequency:   a well-resolved fine-structure 
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convjonent (1-0) with a completely symmetrical profil(\  and the strongest 

fine-structure component (2-0), overlapped on the high-frequency wing by the 

third (w*;ik) fine-structure component.   Close to threshold,   laser ej.scillation 

first occurs on the high-frequency wing of the 2-0 component,  where maxi- 

mum gain occurs,  as explained in Footnote 11   (ii).    Further above threshold 

the 1-0 transition also breaks into oscillation.    Despite the observed 

symmetry of the 1-0 proTfle, this concurrent oscillation occurs above the 

1-0 center frequency,  an effect which must follow from the depletion of gain 

over the entire low-frequency wing,  as described above.   (It must also be 

pointed out that in the observations reported   here the 1-0 oscillation was at 

(15) all times close to threshold and considerably weaker than the 2-0 oscillation.      ) 

Reference 7 treats the field interactions up to third order.  We now outline 

a different approach/8'formulated in terms of single- and double-quantum 

transitions,   which includes power-broadening effects due to a strong laser 

field.   The latter are of considerable interest: on the theoretical side,  it is 

important to inspect whether or not the strikingly simple line-shape behavior 

is merely characteristic of a third-order       culation; on the experimental 

side, it is important to know the influence of power broadening on the observed 

line shape.   Consider the cascade system of Fig. 1(a).    (The final result will be 

written in a form also valid for emission from the upper laser level. Fig. 1(c). ] 

It Is desired to calculate the 0-1 emission spectrum stimulated by the weak 

travelling-wave field E. (O.) in the presence of the strong standing-wave 

field K9(^:9) coupled to the 2-0 transition.   Specifically standing-wave effects 

are avoided by taking Ti» detuned (A.-,   > Ynn^ then oppositely  propagating 

travelling-wave components of E9 do not couple,  and the interaction consists 

of these components independently coupled with E.. 

Consider an ensemble of atoms moving with given axial velocity v. 
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the +z axis being defined by the propagation direction of the travelling-wave 

field E..   In the atoms' rest frame the incident fields appear Doppler-shifted 
i v i ,. 

to frequencies n^ i^d - -) andS29 = fi9 (1 -e -) in which « = + 1 indicates the 

travelling-wave component of E9 propagating along the + 7. direction, respec- 

tively.   We now require a solution in the atoms' rest frame in which the 

three-level system is coupled   to   one of the travelling-wave components of 

t 
the strong field E9 at frequency ft- ~ u„ andtn the weak travelling-wave field 

1 
E. at frequency £2. ^w,-   The resonant interaction of two monochromatic 

fields with a three-level system was treated in Rcf.   5   for the case of Y ali 
.5 

equal.    The perturbation method consisted of first obtaining a closed form 

solution to the Schrodingei equation for E. =0 and E„ arbitrary; and then 

using this result to generate a solution valid to first order in E"    When the 

method is extended to the case of arbitrary 7., the? emitted power in- 

duced by E. at fl* is: 

r ^20 

.1 ^     ^ AB .   B {L2.2_20R) 

(2) 

,2 . 4V2n   ,ö   ,2 ._.!T1       „    *, , o   ,2 

"o{fH%.2 -;B°   }] 
Here. A= I L2 1   + ^12. \$2\l and B - - RL^ ! 32 i'5, with L.=(n!-«Hi 7-. 

Rr l(Q
1
+Q2)_ ^i+"2^ ' iT21'    3j   = ^o^/4^ !' and ^O is the electric- 

dipole matrix element connecting levels j and 0; n   is the number of 

background atoms with velocity v in level j, i. e. the population in absence 

of the strong laser field.    In   Eq.   (2) the n2 coefficient is obtained from 

the 2 -♦  1 transition rate due to double-quantum emission at n. and 12,. ; 

then nn coefficient, in contrast, is obtained from the single -quantum 

emission rate, arising from 0 -*  1 transitions as modified by the presence 

of E.,;  the n.   coefficient  results  from the reverse processes,    namely, 

double-quantum  1 — 2   transitions   and   single-quantum   1 -» 0 
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transitions. (See Ref.   5    )   As a rhork of the detailod algebra,  Eq. (2) 

has also been obtained in an independent calculation using the ensemble- 

averaged density matrix to cstimaK- the induced polarization at u*    an 

(8) approach equivalent to the one presented here. 

li is important to note that (2) i.s entirely valid for the case in which 

the 7.'s are interpreted as decay rates arising from hard collisions.    The 
J (5) 

detailed features of the line shape predicted      by (2) for equal 7. have been 
J 

fully verified in the microwave region where Doppler effect is negligible and 

the linewidths are entirely due to collision effects. 

The complete emission spectrum is obtained by averaging (2) over the 

atomic velocity distribution for c = + 1 and for « :: - 1.    In the fully Doppler- 

broadened limit   7/D « 1 (7 ~7.   and D- Doppler width), and for w. 2: w  , 

N  - N 
P{Q .)=G{n.) r 1 +-5* i E°2im r 1 __^ + 1        n 

in which |rB^ <10
+^720Q + ^(Q -1) andlr^ -- 7^+^y^Q -^(Q + 1); N. is the total 

background population of level j, l' is a proportionality factor > 0, Q2 = 1 + iJ§2i 

o2 Y0T2    ' 
and GCßj)^ (N0- N^Ej   is the power emitted at n    by the Doppler-broadened 

0-1 transition induced by E. in the absence of the laser field.    Equation (3) shows 

the power broadening influence of the laser field,   which enters in a remarkably 

simple way.   Equation (3) has been written in a form valid for both cascade 

{0    - 1) and folded (a = + 1) cases.   Figs.   1(a) and 1(c). 

As pointed out above and explained in Ref.  18, the spontaneous emission spectrum 

from the upper or lower laser levels,  as viewed along the laser axis,  i.s also given 

by Eq. (3) when N.is set equal to 0 and G{ n.) is interpreted as the usual Doppler- 

broadened spontaneous emission spectrum for E9 = 0. 

x'ne discussions of Ref.   3 are consistent with weak-field limit of our treat- 

men: as it applies to spontaneous emission for the special case of No=0.    Note, 

tor instance,  that for ' 3J    .Cvand in the limit of 7.,. -»0, the frequency depen- 
2 & 1 

dence of the 2 ~*l transition rate, obtained from the n9coefficient of our Eq. (2), 
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would involve a 6-function, becoming  ^(ßj +«2 'u)i"w2^ 'L^' '   ' the 72l' 0 discussion 

of Ref.   3 is equivalent to averaging this distribution over velocities. 

To emphasize the significance of the role played by N-,  the background 

atoms in level 0, consider a cascade system in which only level 0 is populated 

(i. e. N. =^T2~ 0).   Then in the rest frame of an atom, an applied laser field at 
1 1 

^2 will diminish the transition rate atii«, leading to two holes of width I" 

and I     superimposed upon the emission profile. [See Eq,  (3).]     As dis- 

(5) cussed earlier,  a 0 -♦]   transition is an inherently single-quantum event 

andmay not be described in terms of a double-quantum process as in a   2 -»1 

transition. 

As pointed out above,   in the oxygen1     '        and xenom     'experiments 

rv, and rv differ   enormously.   In   the  Ne spontaneous   emission 

experiments reported ir Refs.   1 and 2,   however,  they are expected to differ- 

by only about '.'0%.    The observation of this difference would require high 

finesse Fabry-Perot analysis and good laser stability and has not yet been 

achieved. 

In averaging   Eq. (2) for the case of finite y^.  a number of cancellations 

occur in the fully Doppler-broadened limit (y/D<< 1),   leading to a par- 

ticularly simple expression.    It is important to point out that such cancel- 

lations flo not occur in higher orders of y/D.    For instance,  the complete 

cancellation of 7n in r,T,   which occurs in the ease of   W,/OJ0  % i,  will not 
U iN 1       <s 

occur in the next order of Y/D. 
A paper including complete,,oilgebraic details and additional discussions is 

being  submitted  for publication . 
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\:K    A stVtH of th«' int.nsiU  fjf the    1-0    Ltstr f»Sf-ill.itifjrt rs:; .!  furtntifm of 

cavity length would he of inli r«-st. 

16, üi this case the time-dependent «ave-function   *     is obtained from a 

three-level Schrodinger equation to «hich radiative decav terms have 
2 -i\V,t 

been aaded.    For   *=  -r0
c\r ur   -v-'- u   the eigenfunction of 

level j of energy f\V., the coupled equations are: c. ^ Z fa   - lv :   )c 

m which a   - - -1U  e | and EC) is the sum of the two 

travelling-wave fields as seen in the atoms' rest frame. 

17. As an example,   for an atom in level 0 a? initial time t    ^fr-t     r  )   -.£, l--^    o'  T"    0'  0'       i*)* 

and the ü - I transition rate at a iatr.,-ume t is   T   • i^*^* 2-    (Sf",   P^ceeding 

footnote.) Thus,   the total stimulated pover emitted »<. background 
t , 

atoms in l^  el 0 is    * ß, "n^O7! ■  'f"5i't•t0, '     dt0' 

18.    In extending  'vrr.  (2) to the spontaneous emission rase,  the ponulation of 

level I,  n.,   -uould be set equal to 0 and the energv densitv of the weak 
1 

o •? • 3 3   3        • 
probe field,  E   "  Or,  should be replaced by {?iUt     8 x   c  )d'.2   dS,  where 

frequency interval dC* « y and nS is a small solid anale in the forward 

direction (-7-axis); E«, the laser field, remai .s in its classical mono- 

chromatic form.    Similar remarks apply to   £q. (3); note,   in particular. 

thai. G (-^ ) becomes the usual Doppler-broadened snec "urn oi flu '.oxer- 

emitted spontaneously intn   nil   dS with given polarization. 

FIGURE C.-vFTION.S: The figure caption is contained in the figure. 
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